СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по геометрии 7 класса (ФГОС)

Категория: Геометрия

Нажмите, чтобы узнать подробности

Рабочая программа учебного предмета «Геометрия. 7-9  класс» соответствует Федеральному государственному общеобразовательному стандарту основного общего образования.

Просмотр содержимого документа
«Рабочая программа по геометрии 7 класса (ФГОС)»

Пояснительная записка к рабочей программе

по геометрии 7 класс

Рабочая программа учебного предмета «Геометрия. 7-9 класс» соответствует Федеральному государственному общеобразовательному стандарту основного общего образования.


Личностные, метапредметные и предметные результаты освоения содержания курса

Программа обеспечивает достижение следующих результа­тов освоения образовательной программы основного общего образования:

личностные:

  1. формирование ответственного отношения к учению, го­товности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и по­ знанию, выбору дальнейшего образования на базе ориен­тировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

  2. формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  3. формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и млад­шими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятель­ности;

  4. умение ясно, точно, грамотно излагать свои мысли в уст­ной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  6. креативность мышления, инициатива, находчивость, актив­ность при решении геометрических задач;

  7. умение контролировать процесс и результат учебной мате­матической деятельности;

  8. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

1) умение самостоятельно планировать альтернативные пу­ти достижения целей, осознанно выбирать наиболее эф­фективные способы решения учебных и познавательных задач;

  1. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  2. умение адекватно оценивать правильность или ошибоч­ность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  3. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

  4. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное,
    дедуктивное и по аналогии) и выводы;

  5. умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

  6. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: опре­делять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё
    мнение;

  7. формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

  8. первоначальные представления об идеях и о методах ма­тематики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  1. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  2. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение
    в условиях неполной и избыточной, точной и вероятностной информации;

  3. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  4. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  1. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  2. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  3. умение планировать и осуществлять деятельность, на­правленную на решение задач исследовательского характера;

предметные:

  1. овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучае­мых понятиях (число, геометрическая фигура) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  2. умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и гра­мотно выражать свои мысли в устной и письменной речи
    с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства
    математических утверждений;

  3. овладение навыками устных, письменных, инструментальных вычислений;

  4. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных
    умений, приобретение навыков геометрических построений;

  5. усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематиче­ские знания о них для решения геометрических и практических задач;

  6. умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;

  7. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.



Планируемые результаты изучения курса геометрии в 7-9 классах.

Наглядная геометрия

Выпускник научится:

  1. распознавать на чертежах, рисунках, моделях и в окружаю­щем мире плоские и пространственные геометрические фигуры;

  2. распознавать развёртки куба, прямоугольного параллелепи­педа, правильной пирамиды, цилиндра и конуса;

  3. определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

  4. вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

  1. вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепи­педов;

  2. углубить и развить представления о пространственных геометрических фигурах;

применять понятие развёртки для выполнения практи­ческих расчётов.

Геометрические фигуры

Выпускник научится:

  1. пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  2. распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  3. находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов,
    отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

  4. оперировать на базовом уровне понятиями геометрических фигур;

  5. оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

  6. решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  7. решать несложные задачи на построение, применяя основ­ные алгоритмы построения с помощью циркуля и линейки;

  8. решать планиметрические задачи на нахождение геометрических величин по образцам или алгоритмам, решать простейшие планиметрические задачи в пространстве.

  9. извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

  10. применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

Выпускник получит возможность:

  1. овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометри­ческих мест точек;

  2. приобрести опыт применения алгебраического и триго­нометрического аппарата и идей движения при решении геометрических задач;

  3. овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  4. научиться решать задачи на построение методом геометрического места точек и методом подобия;

  5. приобрести опыт исследования свойств планиметриче­ских фигур с помощью компьютерных программ;

  6. приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построе­ние отрезков по формуле»;

  7. научиться использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.


Отношения

Выпускник научится:

1)оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

Выпускник получит возможность:

2)использовать отношения для решения простейших задач, возникающих в реальной жизни.


Геометрические построения

Выпускник научится:

1)изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

Выпускник получит возможность:

2)выполнять простейшие построения на местности, необходимые в реальной жизни.


Геометрические преобразования

Выпускник научится:

1)строить фигуру, симметричную данной фигуре относительно оси и точки.

Выпускник получит возможность:

2)распознавать движение объектов в окружающем мире; симметричные фигуры в окружающем мире.


Измерение геометрических величин

Выпускник научится:

  1. использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, дли­ны окружности, длины дуги окружности, градусной меры угла;

  2. вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окруж­ности, формулы площадей фигур;

  3. вычислять площади треугольников, прямоугольников, па­раллелограммов, трапеций, кругов и секторов;

  4. вычислять длину окружности, длину дуги окружности;

  5. решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

  6. решать практические задачи, связанные с нахождением гео­метрических величин (используя при необходимости справочники и технические средства);

  7. выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  8. применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

  9. применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

Выпускник получит возможность:

10)вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

11)вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

12)приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

13)вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.


Координаты

Выпускник научится:

  1. вычислять длину отрезка по координатам его концов; вы­числять координаты середины отрезка;

  2. использовать координатный метод для изучения свойств прямых и окружностей;

  3. определять приближенно координаты точки по ее изображению на координатной плоскости

Выпускник получит возможность:

  1. овладеть координатным методом решения задач на вычисление и доказательство;

  2. приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

  3. приобрести опыт выполнения проектов на тему «При­менение координатного метода при решении задач на вычисление и доказательство».


Векторы

Выпускник научится:

  1. оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, рав­ный произведению заданного вектора на число;

  2. находить для векторов, заданных координатами: длину век­тора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распре­делительный законы;

  3. вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность пря­мых.

Выпускник получит возможность:

  1. овладеть векторным методом для решения задач на вы­числение и доказательство;

  2. приобрести опыт выполнения проектов на тему «При­менение векторного метода при решении задач на вычисление и доказательство».


Содержание курса геометрии в 7–9 классах

Векторы и координаты на плоскости

Векторы

Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.

Координаты

Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

История математики. Геометрические фигуры

Фигуры в геометрии и в окружающем мире

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, круг.

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

Многоугольники

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.

Окружность, круг

Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Геометрические фигуры в пространстве (объемные тела)

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Отношения

Равенство фигур

Свойства равных треугольников. Признаки равенства треугольников.

Параллельно­сть прямых

Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.

Перпендикулярные прямые

Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

Подобие

Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Взаимное расположение прямой и окружности, двух окружностей.

Измерения и вычисления

Величины

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.

Представление об объеме и его свойствах. Измерение объема. Единицы измерения объемов.

Измерения и вычисления

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины ок­ружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.

Расстояния

Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Геометрические построения

Геометрические построения для иллюстрации свойств геометрических фигур.

Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

Деление отрезка в данном отношении.

Геометрические преобразования

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения

Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.





















Календарно-тематическое планирование по геометрии для 7 класса


п/п

Кол-во часов

Дата

Тема урока

Вид деятельность ученика на уровне

учебных действий

предметных

результатов

личностных результатов

универсальных учебных действий (УУД)

познавательные

регулятивные

коммуникативные


10



Глава I. Начальные геометрические сведения (10 ч)

1

1


Прямая и отрезок

Объясняют что такое отрезок

Владеют понятием «отрезок»

Осознают роль ученика, осваивают личностный смысл учения

Обрабатывают информацию и передают ее устным, письменным и символьным способами

Выделяют и осознают то, что уже усвоено и что еще подлежит усвоению

Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника

2

1


Луч и угол

Объясняют что такое луч и угол

Владеют понятиями «луч», «угол»

Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий

Обрабатывают информацию и передают ее устным, графическим, письменным и символьным способами

Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию

Дают адекватную оценку своему мнению

3

1


Сравнение отрезков и углов

Объясняют, какие фигуры называются равными, как сравнивают отрезки и углы, что такое середина отрезка и биссектриса угла

Приобретают навык геометрических построений, применяют изученные понятия, методы для решения задач практического характера

Осуществляют выбор действий в однозначных и неоднозначных ситуациях, комментируют и оценивают свой выбор

Владеют смысловым чтением. Представляют информацию в разных формах (текст, графика, символы)

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами

4

1


Измерение отрезков

Объясняют, как измеряют отрезки, что называется масштабным отрезком

Измеряют длины отрезков

Осваивают культуру работы с учебником, поиска информации

Устанавливают аналогии для понимания закономерностей, используют их в решении задач

Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей

Отстаивают свою точку зрения, подтверждают фактами

5

1


Измерение углов

Объясняют, как измеряют углы, что такое градус и градусная мера угла


Измеряют величины углов

Понимают обсуждаемую информацию, смысл данной информации в собственной жизни

Представляют информацию в разных формах (текст, графика, символы)

Самостоятельно составляют алгоритм деятельности при решении учебной задачи

Своевременно оказывают необходимую взаимопомощь сверстникам

6

1


Измерение углов

Объясняют, какой угол называется прямым, тупым, острым, развернутым

Находят градусную меру угла, используя свойство измерения углов

Создают образ целостного мировоззрения при решении математических задач

Обрабатывают информацию и передают ее устным, письменным и графическим способами

Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей

Своевременно оказывают необходимую взаимопомощь сверстникам

7

1


Смежные и вертикальные углы

Объясняют, какие углы называются смежными и какие вертикальными. Формулируют и обосновывают утверждения о свойствах смежных и вертикальных углов

Работают с геометрическим текстом, проводят логические обоснования, доказательства математических утверждений

Осознают роль ученика, осваивают личностный смысл учения

Устанавливают аналогии для понимания закономерностей, используют их в решении задач

Самостоятельно составляют алгоритм деятельности при решении учебной задачи

Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы

8

1


Перпенди-кулярные прямые

Объясняют, какие прямые называются перпендикулярными. Формулируют и обосновывают утверждение о свойстве двух перпендикуляр-ных прямых к третьей

Приобретают навык геометрических построений, применяют изученные понятия, методы для решения задач практического характера

Осваивают культуру работы с учебником, поиска информации

Находят в учебниках, в т.ч. используя ИКТ, достоверную информацию, необходимую для решения задач

Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей

Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами

9

1


Решение задач по теме: «Начальные геометрические сведения»

Изображают и распознают указанные простейшие фигуры на чертежах. Решают задачи, связанные с этими простейшими фигурами

Используют свойства измерения отрезков и углов при решении задач на нахождение длины отрезка, градусной меры угла

Проявляют познавательную активность, творчество

Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку

Работая по плану, сверяют свои действия с целью, вносят корректировки

Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы

10

1


Контрольная работа №1 по теме: «Начальные геометричес-кие сведения»

Распознают геометрические фигуры и их отношения. Решают задачи на вычисление длин отрезков градусных мер углов с необходимыми теоретическими обоснованиями

Демонстрируют математические знания и умения при решении примеров и задач

Адекватно оценивают результаты работы с помощью критериев оценки

Применяют полученные знания при решении различного вида задач

Самостоятельно контролируют своё время и управляют им

С достаточной полнотой и точностью выражают свои мысли посредством письменной речи


17



Глава II. Треугольники (17 ч)

11

1


Треугольник

Объясняют, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника

Распознают и изображают на чертежах треугольники. Используют свойства измерения длин отрезков при решении задач на нахождение периметра треугольника

Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий

Восстанавливают предметную ситуацию, описанную в задаче, переформулируют условие, извлекать необходимую информацию

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника

12

1


Треугольник

Объясняют, какие треугольники называются равными. Изображают и распознают на чертежах треугольники и их элементы

Вычисляют элементы треугольников, используя свойства измерения длин и градусной меры угла

Демонстрируют мотивацию к познавательной деятельности

Обрабатывают информацию и передают ее устным, письменным, графическим и символьным способами

Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию

Проектируют и формируют учебное сотрудничество с учителем и сверстниками

13

1


Первый признак равенства треуголь-ников

Объясняют что такое теорема и доказательство. Формулируют и доказывают первый признак равенства треугольников

Используют свойства и признаки фигур, а также их отношения при решении задач на доказательство

Осознают роль ученика, осваивают личностный смысл учения

Устанавливают аналогии для понимания закономерностей, используют их в решении задач

Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей

Отстаивают свою точку зрения, подтверждают фактами

14

1


Перпенди-куляр к прямой

Объясняют, какой отрезок называется перпендикуляром, проведенным из данной точки к данной прямой. Формулируют и доказывают теорему о перпендикуляре к прямой

Распознают и изображают на чертежах и рисунках перпендикуляр и наклонную к прямой.

Создают образ целостного мировоззрения при решении математических задач

Применяют полученные знания при решении различного вида задач

Планируют алгоритм выполнения задания, корректируют работу по ходу выполнения с помощью учителя и ИКТ средств

Предвидят появление конфликтов при наличии различных точек зрения. Принимают точку зрения другого

15

1


Медианы, биссектрисы и высоты треугольника

Объясняют, какие отрезки называются медианой, биссектрисой и высотой треугольника. Формулируют их свойства

Распознают и изображают на чертежах и рисунках медианы, биссектрисы и высоты треугольника

Демонстрируют мотивацию к познавательной деятельности

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Работая по плану, сверяют свои действия с целью, вносят корректировки

Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы

16

1


Свойства равнобедрен-ного треугольника

Объясняют, какой треугольник называется равнобедренным и какой равносторонним. Формулируют и доказывают теоремы о свойствах равнобедренного треугольника

Применяют изученные свойства фигур и отношения между ними при решении задач на доказательство и вычисление длин, линейных элементов фигур

Грамотно и аргументировано излагают свои мысли, проявляют уважительное отношение к мнениям других людей


Структурируют знания, определяют основную и второстепенную информацию

Работают по плану, сверяясь с целью, корректируют план

Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами

17

1


Второй и третий признаки равенства треуголь-ников

Формулируют и доказывают второй и третий признак равенства треугольников

Анализируют текст задачи на доказательство, выстраивают ход ее решения

Понимают обсуждаемую информацию, смысл данной информации в собственной жизни

Устанавливают аналогии для понимания закономерностей, используют их при решении задач

Самостоятельно составляют алгоритм деятельности при решении учебной задачи

Проектируют и формируют учебное сотрудничество с учителем и сверстниками

18

1


Второй и третий признаки равенства треуголь-ников

Решают задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника

Используют свойства и признаки фигур, а также их отношения при решении задач на доказательство

Осознают роль ученика, осваивают личностный смысл учения

Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку

Выделяют и осознают то, что уже усвоено и что еще подлежит усвоению

Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника

19

1


Второй и третий признаки равенства треуголь-ников

Решают задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника

Применяют отношения фигур и их элементов при решении задач на вычисление и доказательство

Осваивают культуру работы с учебником, поиска информации

Обрабатывают информацию и передают ее устным, письменным и символьным способами

Работают по плану, сверяясь с целью, корректируют план

Проектируют и формируют учебное сотрудничество с учителем и сверстниками

20

1


Второй и третий признаки равенства треуголь-ников

Решают задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника

Применяют отношения фигур и их элементов при решении задач на вычисление и доказательство

Проявляют мотивацию к познавательной деятельности при решении задач с практическим содержанием

Владеют смысловым чтением

Выбирают действия в соответствии с поставленной задачей и условиями ее реализации, самостоятельно оценивают результат

Отстаивают свою точку зрения, подтверждают фактами

21

1


Окружность

Объясняют что такое определение. Формулируют определение окружности. Объясняют что такое центр, радиус, хорда и диаметр окружности

Изображают на чертежах и рисунках окружность и ее элементы. Применяют знания при решении задач на доказательство

Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий

Анализируют (в т.ч. выделяют главное, разделяют на части) и обобщают

Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию

Предвидят появление конфликтов при наличии различных точек зрения. Принимают точку зрения другого

22

1


Построения циркулем и линейкой

Объясняют, как отложить на данном луче от его начала отрезок, равный данному

Выполняют построение, используя алгоритм построения отрезка равного данному

Проявляют познавательную активность, творчество. Адекватно оценивают результаты работы с помощью критериев оценки

Анализируют и сравнивают факты и явления

Работая по плану, сверяют свои действия с целью, вносят корректировки

Своевременно оказывают необходимую взаимопомощь сверстникам

23

1


Задачи на построение

Объясняют построение угла, равного данному, биссектрисы данного угла

Выполняют построения, используя алгоритмы построения угла, равного данному, биссектрисы данного угла

Осуществляют выбор действий в однозначных и неоднозначных ситуациях, комментируют и оценивают свой выбор

Владеют смысловым чтением

Самостоятельно составляют алгоритм деятельности при решении учебной задачи

Верно используют в устной и письменной речи математические термины.

24

1


Задачи на построение

Объясняют построение перпендикулярных прямых, середины данного отрезка

Выполняют построения, используя алгоритмы построения перпендикулярных прямых, середины данного отрезка

Проявляют мотивацию к познавательной деятельности при решении задач с практическим содержанием

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Применяют установленные правила в планировании способа решения

Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами

25

1


Решение задач по теме: «Треуголь-ники»

Анализируют и осмысливают текст задачи, моделируют условие с помощью схем, чертежей, реальных предметов.

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осваивают культуру работы с учебником, поиска информации

Восстанавливают предметную ситуацию, описанную в задаче, переформулируют условие, извлекать необходимую информацию

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Верно используют в устной и письменной речи математические термины. Различают в речи собеседника аргументы и факты

26

1


Решение задач по теме: «Треуголь-ники»

Анализируют и осмысливают текст задачи, моделируют условие с помощью схем, чертежей, реальных предметов.

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осваивают культуру работы с учебником, поиска информации

Применяют полученные знания при решении различного вида задач

Прилагают волевые усилия и преодолевают трудности и препятствия на пути достижения целей

Дают адекватную оценку своему мнению


27

1



Контрольная работа №2 по теме: «Треуголь-ники»

Распознают на чертежах геометрические фигуры и их элементы. Решают задачи на доказательство и вычисление

Демонстрируют математические знания и умения при решении примеров и задач

Адекватно оценивают результаты работы с помощью критериев оценки



Применяют полученные знания при решении различного вида задач



Самостоятельно контролируют своё время и управляют им



С достаточной полнотой и точностью выражают свои мысли посредством письменной речи


13



Глава III. Параллельные прямые (13 ч)

28

1


Параллель-ные прямые

Формулируют определение параллельных прямых. Объясняют что такое секущая. С помощью рисунка, называют пары углов, образованных при пересечении двух прямых секущей

Распознают и изображают на чертежах и рисунках параллельные прямые, секущую. На рисунке обозначают пары углов, образованных при пересечении двух прямых секущей

Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий

Восстанавливают предметную ситуацию, описанную в задаче, переформулируют условие, извлекать необходимую информацию

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника

29

1


Признаки параллель-ности двух прямых

Формулируют и доказывают теоремы, выражающие признаки параллельности двух прямых

Используют свойства и признаки фигур, а также их отношения при решении задач на доказательство

Демонстрируют мотивацию к познавательной деятельности

Обрабатывают информацию и передают ее устным, письменным, графическим и символьным способами

Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию

Проектируют и формируют учебное сотрудничество с учителем и сверстниками

30

1


Признаки параллель-ности двух прямых

Решают задачи на доказательство связанные с признаками параллельности двух прямых.

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осознают роль ученика, осваивают личностный смысл учения

Устанавливают аналогии для понимания закономерностей, используют их в решении задач

Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей

Отстаивают свою точку зрения, подтверждают фактами

31

1


Признаки параллель-ности двух прямых

Рассказывают о практических способах построения параллельных прямых.

Выполняют построения, используя алгоритмы построения параллельных прямых

Создают образ целостного мировоззрения при решении математических задач

Применяют полученные знания при решении различного вида задач

Планируют алгоритм выполнения задания, корректируют работу по ходу выполнения с помощью учителя и ИКТ средств

Предвидят появление конфликтов при наличии различных точек зрения. Принимают точку зрения другого

32

1


Аксиома параллельных прямых

Объясняют, что такое аксиомы геометрии, приводят примеры аксиом. Формулируют аксиому параллельных прямых и выводят следствия из нее

Владеют понятием «аксиома». Приводят примеры аксиом

Демонстрируют мотивацию к познавательной деятельности

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Работая по плану, сверяют свои действия с целью, вносят корректировки

Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы

33

1


Аксиома параллельных прямых

Формулируют и доказывают теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности двух прямых. Объясняют, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий

Восстанавливают предметную ситуацию, описанную в задаче, переформулируют условие, извлекать необходимую информацию

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника

34

1


Аксиома параллельных прямых

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Демонстрируют мотивацию к познавательной деятельности

Обрабатывают информацию и передают ее устным, письменным, графическим и символьным способами

Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию

Проектируют и формируют учебное сотрудничество с учителем и сверстниками

35

1


Аксиома параллельных прямых

Объясняют, в чем заключается метод доказательства от противного; формулируют и доказывают теоремы об углах с соответственно параллельными и перпендикулярными сторонами

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осознают роль ученика, осваивают личностный смысл учения

Устанавливают аналогии для понимания закономерностей, используют их в решении задач

Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей

Отстаивают свою точку зрения, подтверждают фактами

36

1


Аксиома параллельных прямых

Решают задачи на вычисление, доказательство и построение, связанные с параллельными прямыми

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Создают образ целостного мировоззрения при решении математических задач

Применяют полученные знания при решении различного вида задач

Планируют алгоритм выполнения задания, корректируют работу по ходу выполнения с помощью учителя и ИКТ средств

Предвидят появление конфликтов при наличии различных точек зрения. Принимают точку зрения другого

37

1


Решение задач по теме: «Параллель-ные прямые»

Анализируют и осмысливают текст задачи, моделируют условие с помощью схем, чертежей, реальных предметов.

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Проявляют мотивацию к познавательной деятельности при решении задач с практическим содержанием

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Применяют установленные правила в планировании способа решения

Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами

38

1


Решение задач по теме: «Параллель-ные прямые»

Анализируют и осмысливают текст задачи, моделируют условие с помощью схем, чертежей, реальных предметов.

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осваивают культуру работы с учебником, поиска информации

Восстанавливают предметную ситуацию, описанную в задаче, переформулируют условие, извлекать необходимую информацию

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Верно используют в устной и письменной речи математические термины. Различают в речи собеседника аргументы и факты

39

1


Решение задач по теме: «Параллель-ные прямые»

Анализируют и осмысливают текст задачи, моделируют условие с помощью схем, чертежей, реальных предметов.

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осваивают культуру работы с учебником, поиска информации

Применяют полученные знания при решении различного вида задач

Прилагают волевые усилия и преодолевают трудности и препятствия на пути достижения целей

Дают адекватную оценку своему мнению

40

1


Контрольная работа №3 по теме: «Параллель-ные прямые»

Распознают на чертежах геометрические фигуры и их элементы. Решают задачи на доказательство и вычисление

Демонстрируют математические знания и умения при решении примеров и задач

Адекватно оценивают результаты работы с помощью критериев оценки

Применяют полученные знания при решении различного вида задач

Самостоятельно контролируют своё время и управляют им

С достаточной полнотой и точностью выражают свои мысли посредством письменной речи


18



Глава IV. Соотношения между сторонами и углами треугольника (18 ч)

41

1


Сумма углов треугольника

Формулируют и доказывают теорему о сумме углов треугольника и ее следствие о внешнем угле треугольника

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий

Восстанавливают предметную ситуацию, описанную в задаче, переформулируют условие, извлекать необходимую информацию

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника

42

1


Сумма углов треугольника

Проводят классификацию треугольников по углам

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Демонстрируют мотивацию к познавательной деятельности

Обрабатывают информацию и передают ее устным, письменным, графическим и символьным способами

Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию

Проектируют и формируют учебное сотрудничество с учителем и сверстниками

43

1


Соотношения между сторонами и углами треугольника

Формулируют и доказывают теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждение)

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осознают роль ученика, осваивают личностный смысл учения

Устанавливают аналогии для понимания закономерностей, используют их в решении задач

Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей

Отстаивают свою точку зрения, подтверждают фактами

44

1


Соотношения между сторонами и углами треугольника

Формулируют и доказывают следствия из теоремы о соотношениях между сторонами и углами треугольника

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Создают образ целостного мировоззрения при решении математических задач

Применяют полученные знания при решении различного вида задач

Планируют алгоритм выполнения задания, корректируют работу по ходу выполнения с помощью учителя и ИКТ средств

Предвидят появление конфликтов при наличии различных точек зрения. Принимают точку зрения другого

45

1


Соотношения между сторонами и углами треугольника

Формулируют и доказывают теорему о неравенстве треугольника

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Демонстрируют мотивацию к познавательной деятельности

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Работая по плану, сверяют свои действия с целью, вносят корректировки

Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы

46

1


Контрольная работа № 4 по теме: «Соотноше-ния между сторонами и углами треуголь-ника»

Распознают на чертежах геометрические фигуры и их элементы. Решают задачи на доказательство и вычисление

Демонстрируют математические знания и умения при решении примеров и задач

Адекватно оценивают результаты работы с помощью критериев оценки

Применяют полученные знания при решении различного вида задач

Самостоятельно контролируют своё время и управляют им

С достаточной полнотой и точностью выражают свои мысли посредством письменной речи

47

1


Прямоуголь-ные треугольники

Формулируют и доказывают теорему о сумме двух острых углов прямоугольного треугольника

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий

Восстанавливают предметную ситуацию, описанную в задаче, переформулируют условие, извлекать необходимую информацию

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника

48

1


Прямоуголь-ные треугольники

Формулируют и доказывают свойство катета прямоугольного треугольника, лежащего против угла в (прямое и обратное утверждение)

Используют свойства и признаки фигур, а также их отношения при решении задач на доказательство

Демонстрируют мотивацию к познавательной деятельности

Обрабатывают информацию и передают ее устным, письменным, графическим и символьным способами

Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию

Проектируют и формируют учебное сотрудничество с учителем и сверстниками

49

1


Прямоуголь-ные треугольники

Формулируют и доказывают признак равенства прямоугольных треугольников по гипотенузе и острому углу

Анализируют текст задачи на доказательство, выстраивают ход ее решения

Осознают роль ученика, осваивают личностный смысл учения

Устанавливают аналогии для понимания закономерностей, используют их в решении задач

Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей

Отстаивают свою точку зрения, подтверждают фактами

50

1


Прямоуголь-ные треугольники

Формулируют и доказывают признак равенства прямоугольных треугольников по гипотенузе и катету

Анализируют текст задачи на доказательство, выстраивают ход ее решения

Создают образ целостного мировоззрения при решении математических задач

Применяют полученные знания при решении различного вида задач

Планируют алгоритм выполнения задания, корректируют работу по ходу выполнения с помощью учителя и ИКТ средств

Предвидят появление конфликтов при наличии различных точек зрения. Принимают точку зрения другого

51

1


Построение треугольника по трем элементам

Объясняют, какой отрезок называется наклонной, проведенной из данной точки к данной прямой Доказывают, что перпендикуляр, проведенный из точки к прямой, меньше любой наклонной, проведенной из этой же точки к этой прямой.

Формулируют определение расстояния от точки до прямой

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Демонстрируют мотивацию к познавательной деятельности

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Работая по плану, сверяют свои действия с целью, вносят корректировки

Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы

52

1


Построение треугольника по трем элементам

Решают задачи на вычисление, доказательство и построение, связанные с расстоянием от точки до прямой

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Проявляют познавательную активность, творчество. Адекватно оценивают результаты работы с помощью критериев оценки

Анализируют и сравнивают факты и явления

Работая по плану, сверяют свои действия с целью, вносят корректировки

Своевременно оказывают необходимую взаимопомощь сверстникам

53

1


Построение треугольника по трем элементам

Формулируют и доказывают свойство о равноудаленности точек параллельных прямых. Формулируют определение расстояния между двумя параллельными прямыми

Анализируют текст задачи на доказательство, выстраивают ход ее решения

Осуществляют выбор действий в однозначных и неоднозначных ситуациях, комментируют и оценивают свой выбор

Владеют смысловым чтением

Самостоятельно составляют алгоритм деятельности при решении учебной задачи

Верно используют в устной и письменной речи математические термины.

54

1


Построение треугольника по трем элементам

Решают задачи на вычисление, доказательство и построение, связанные с расстоянием между параллельными прямыми.

Выполняют построения, используя известные алгоритмы построения геометрических фигур: отрезок, равный данному; угол, равный данному

Проявляют мотивацию к познавательной деятельности при решении задач с практическим содержанием

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Применяют установленные правила в планировании способа решения

Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами

55

1


Решение задач по теме: «Прямоугольные треугольники. Геометричес-кие построения»

Решают задачи на вычисление, доказательство и построение, проводят по ходу решения дополнительные построения

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Проявляют мотивацию к познавательной деятельности при решении задач с практическим содержанием

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Применяют установленные правила в планировании способа решения

Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами

56

1


Решение задач по теме: «Прямоугольные треугольники. Геометричес-кие построения»

Анализируют и осмысливают текст задачи,

моделируют условие с помощью схем, чертежей, реальных предметов, сопоставляют полученный результат с условием задачи.

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осваивают культуру работы с учебником, поиска информации

Восстанавливают предметную ситуацию, описанную в задаче, переформулируют условие, извлекать необходимую информацию

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Верно используют в устной и письменной речи математические термины. Различают в речи собеседника аргументы и факты

57

1


Решение задач по теме: «Прямоугольные треугольники. Геометричес-кие построения»

Анализируют и осмысливают текст задачи, моделируют условие с помощью схем, чертежей, реальных предметов, в задачах на построение исследуют возможные случая.

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление, доказательство и построение

Осваивают культуру работы с учебником, поиска информации

Применяют полученные знания при решении различного вида задач

Прилагают волевые усилия и преодолевают трудности и препятствия на пути достижения целей

Дают адекватную оценку своему мнению

58

1


Контрольная работа № 5 по теме: «Прямоугольные треуголь-ники. Геометрические построения»

Распознают на чертежах геометрические фигуры и их элементы. Решают задачи на доказательство и вычисление

Демонстрируют математические знания и умения при решении задач

Адекватно оценивают результаты работы с помощью критериев оценки

Применяют полученные знания при решении различного вида задач

Самостоятельно контролируют своё время и управляют им

С достаточной полнотой и точностью выражают свои мысли посредством письменной речи


12



Итоговое повторение (12 ч)

59







60





61

1







1





1





Повторение. Треугольники

Распознают на чертежах геометрические фигуры. Выделяют конфигурацию, необходимую для поиска решения задачи, используя определения, признаки и свойства выделяемых фигур или их отношений

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Грамотно и аргументировано излагают свои мысли, проявляют уважительное отношение к мнению общественности

Анализируют и сравнивают факты и явления

Работая по плану, сверяясь с целью, находят и исправляют ошибки, в т.ч., используя ИКТ.

Своевременно оказывают необходимую взаимопомощь сверстникам

62





63





64

1





1





1


Повторение. Параллельные прямые

Отражают условие задачи на чертежах. Выделяют конфигурацию, необходимую для поиска решения задачи, используя определения, признаки и свойства выделяемых фигур или их отношений

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Оценивают собственные и чужие поступки, основываясь на общечеловеческие нормы, нравственные и этические ценности человечества

Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей

Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя

Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника

65- 70




6


Повторение. Соотношение между сторонами и углами треугольника

Соотносят чертеж, сопровождающий задачу, с текстом задачи, выполняют дополнительные построения для решения задач. Выделяют конфигурацию, необходимую для поиска решения задачи, используя определения, признаки и свойства выделяемых фигур или их отношений

Используют изученные свойства геометрических фигур и отношения между ними при решении задач на вычисление и доказательство

Осуществляют выбор действий в однозначных и неоднозначных ситуациях, комментируют и оценивают свой выбор

Владеют смысловым чтением

Планируют алгоритм выполнения задания, корректируют работу по ходу выполнения с помощью учителя и ИКТ средств

Осуществляют контроль, коррекцию, оценку собственных действий и действий партнёра

8 класс

Номер пара­графа

Содержание материала

Коли­чество часов

Характеристика основных видов деятельности ученика (на уровне учебных действий)

Глава V. Четырёхугольники

14

Объяснять, что такое ломаная, многоугольник, его вер­шины, смежные стороны, диагонали, изображать и рас­познавать многоугольники на чертежах; показывать эле­менты многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого много­угольника; изображать и распознавать выпуклые и невы­пуклые многоугольники; формулировать и доказывать утверждения о сумме углов выпуклого многоугольника и сумме его внешних углов; объяснять, какие стороны (вер­шины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеций, прямоуголь­ника, ромба, квадрата; изображать и распознавать эти четырёхугольники; формулировать и доказывать утверж­дения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанные с этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно прямой (точки), в каком случае фигура называется симметричной

1 2


3

Многоугольники Параллелограмм и трапеция

Прямоугольник, ромб, квадрат

Решение задач Контрольная работа № 1

2 6


4


1 1

Глава VI. Площадь

14

Объяснять, как производится измерение площадей мно­гоугольников, какие многоугольники называются равно­великими и какие равносоставленными; формулировать основные свойства площадей и выводить с их помощью формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; формулировать и доказывать те­орему об отношении площадей треугольников, имеющих по равному углу; формулировать и доказывать теорему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и те­оремой Пифагора

1 2


3

Площадь многоугольника Площади параллелограмма, тре­угольника и трапеции

Теорема Пифагора

Решение задач

Контрольная работа № 2

2

6


3 2 1

Глава VII. Подобные треугольники

19


1


2



3



4

Определение подобных треуголь­ников

Признаки подобия треугольников

Контрольная работа № 3 Применение подобия к доказа­тельству теорем и решению задач

Соотношения между сторонами и углами прямоугольного тре­угольника

Контрольная работа № 4

2


5


1

7



3




1

Объяснять понятие пропорциональности отрезков; фор­мулировать определения подобных треугольников и ко­эффициента подобия; формулировать и доказывать тео­ремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о про­порциональных отрезках в прямоугольном треугольнике; объяснять, что такое метод подобия в задачах на постро­ение, и приводить примеры применения этого метода; объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности; объяснять, как ввести понятие подобия для произвольных фигур; формулировать определения и иллюстрировать понятия синуса, косинуса и тангенса острого угла прямо­угольного треугольника; выводить основное тригономе­трическое тождество и значения синуса, косинуса и тан­генса для углов 30°, 45°, 60°; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций использовать компьютер­ные программы

Глава VIII. Окружность

17


1 2


3


4

Касательная к окружности Центральные и вписанные углы

Четыре замечательные точки тре­угольника

Вписанная и описанная окруж­ности

Решение задач

Контрольная работа № 5

3 4


3


4


2

1

Исследовать взаимное расположение прямой и окружно­сти; формулировать определение касательной к окруж­ности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках каса­тельных, проведённых из одной точки; формулировать понятия центрального угла и градусной меры дуги окруж­ности; формулировать и доказывать теоремы: о вписан­ном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы, связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис тре­угольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров к сторонам треугольника; о пересечении высот треуголь­ника; формулировать определения окружностей, вписан­ной в многоугольник и описанной около многоугольника; формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об окружности, описанной око­ло треугольника; о свойстве сторон описанного четы­рёхугольника; о свойстве углов вписанного четырёхугольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольниками и четырёхугольниками; исследовать свойства конфигураций, связанных с окруж­ностью, с помощью компьютерных программ

Повторение. Решение задач

4



9 класс

Номер пара­графа

Содержание материала

Коли­чество часов

Характеристика основных видов деятельности ученика (на уровне учебных действий)

Повторение курса геометрии 8 класса

2


Глава IX. Векторы

12

Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов; мотивировать введение понятий и действий, связанных с векторами, соответствующими примерами, относящи­мися к физическим векторным величинам; применять векторы и действия над ними при решении геометриче­ских задач

1 2 3

Понятие вектора

Сложение и вычитание векторов

Умножение вектора на число. Применение векторов к решению задач

Контрольная работа № 1

2


4

5



1

Глава X. Метод координат

10

Объяснять и иллюстрировать понятия прямоугольной си­стемы координат, координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой



1 2


3

Координаты вектора Простейшие задачи в коорди­натах

Уравнения окружности и прямой

Решение задач

Контрольная работа № 2

2


3


3 1 1

Глава XI. Соотношения между сторо­нами и углами треугольника. Ска­лярное произведение векторов

14

Формулировать и иллюстрировать определения синуса, косинуса, тангенса и котангенса углов от 0 до 180°; вы­водить основное тригонометрическое тождество и фор­мулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении тре­угольников; объяснять, как используются тригонометри­ческие формулы в измерительных работах на местности; формулировать определения угла между векторами и скалярного произведения векторов; выводить формулу скалярного произведения через координаты векторов; формулировать и обосновывать утверждение о свойствах скалярного произведения; использовать скалярное про­изведение векторов при решении задач

1


2

Синус, косинус, тангенс, котан­генс угла

Соотношения между сторонами и углами треугольника

Скалярное произведение векто­ров

Решение задач

Контрольная работа № 3

3


6



3


1

1

Глава XII. Длина окружности и пло­щадь круга

12

Формулировать определение правильного многоуголь­ника; формулировать и доказывать теоремы об окруж­ностях, описанной около правильного многоугольника и вписанной в него; выводить и использовать форму­лы для вычисления площади правильного многоуголь­ника, его стороны и радиуса вписанной окружности; решать задачи на построение правильных многоуголь­ников; объяснять понятия длины - окружности и площа­ди круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кру­гового сектора; применять эти формулы при решении задач

1 2

Правильные многоугольники Длина окружности и площадь круга

Решение задач

Контрольная работа № 4

4

4


3 1

Глава XIII. Движения

6

Объяснять, что такое отображение плоскости на себя и в каком случае оно называется движением плоскости; объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движе­ниями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных про­грамм

1 2

Понятие движения Параллельный перенос и поворот

Решение задач


2

2


2

1

Глава XIV. Начальные сведения из стереометрии

4

Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, что такое n-угольная призма, её основания, боковые грани и боковые рёбра, какая призма называет­ся прямой и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой па­раллелепипед называется прямоугольным; формулиро­вать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоуголь­ного параллелепипеда; объяснять, что такое объём мно­гогранника; объ­яснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рё­бра и высота пирамиды, какая пирамида называется пра­вильной, что такое апофема правильной пирамиды, объяснять, какое тело называется цилиндром, что такое его ось, высота, осно­вания, радиус, боковая поверхность, образующие, раз­вёртка боковой поверхности, какими формулами выража­ются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образую­щие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверх­ности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диа­метр сферы (шара), распозна­вать на рисунках призму, параллелепипед, пирамиду, ци­линдр, конус, шар

1

2

Многогранники

Тела и поверхности вращения

2

2


Повторение. Решение задач. Об аксиомах планиметрии

Итоговая контрольная работа № 5

8