РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ
10 – 11 классы
Уровень: среднее (полное) общее образование
Срок реализации программы - 2 года
Базовый уровень
1. Пояснительная записка
Рабочая программа по математике для 10-11 классов разработана на основе: Федерального государственного образовательного стандарта среднего общего образования, обязательного минимума содержания и в соответствии с объемом времени, отводимым на изучение данного предмета по Учебному плану МБОУ СОШ с. Воробьевка.
Рабочая программа детализирует и раскрывает содержание государственного образовательного стандарта, определяет общую стратегию обучения, воспитания и развития учащихся средствами учебного предмета в соответствии с целями изучения математике, которые определены стандартом.
Рабочая программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета. Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:
- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественно-научных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
Задачи учебного предмета:
Содержание образования, представленное в средней школе, развивается в следующих направлениях:
• совершенствование техники вычислений
• развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем
• систематическое изучение свойств геометрических тел в пространстве, развитие пространственных представлений учащихся, освоение способов вычисления практически важных геометрических величин и дальнейшее развитие логического мышления учащихся
• систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи
• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин
2. Общая характеристика учебного предмета.
Математическое образование в средней школе складывается из следующих содержательных компонентов (точные названия блоков): алгебра; начала анализа; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах. Для продуктивной деятельности в современном мире требуется достаточно прочная математическая подготовка. Каждому человеку в своей жизни приходится выполнять сложные расчеты, владеть практическими математическими приемами.
Алгебра и начала анализа – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения, интуиции, математической культуры учащихся.
Алгебра и начала математического анализа нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры. Изучение алгебры и начал анализа вносит вклад в развитие логического мышления, способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Кроме того, основной задачей курса алгебры и начал анализа является необходимость обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни в современном обществе, достаточных для изучения смежных дисциплин и продолжения образования.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Для продуктивной деятельности в современном мире требуется достаточно прочная
математическая подготовка.
Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры учащихся. Изучение геометрии вносит вклад в развитие логического мышления.
Изучение Геометрии развивает воображение, пространственные представлении способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. Кроме того, основной задачей курса геометрии является необходимость обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни в современном обществе, достаточных для изучения смежных дисциплин и продолжения образования.
Курс стереометрии в 10-11 классе направлен на систематическое изучение свойств геометрических тел в пространстве, развитие пространственных представлений учащихся, освоение способов вычисления практически важных геометрических величин и дальнейшее развитие логического мышления учащихся.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
- развить представления о числе и роли вычислений в человеческой практике;
- сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
3. Описание места учебного предмета в учебном плане
Тематическое планирование составлено к УМК А.Г. Мордковича и др. «Алгебра и начала анализа», 10-11 класс, Москва, 2013 года на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, опубликованного в книге А. Г. Мордковича «Алгебра и начала анализа 10–11 классы. Пособие для учителей», М., Мнемозина 2004 г.;
Программа по алгебре и началам математического анализа рассчитана на 105 часов в 10 классе - 3 часа в неделю, 35 учебных недель и на 102 часа в 11 классе - 3 часа в неделю, 34 учебные недели.
Программа по геометрии рассчитана на 70 часов в 10 классе – 2 часа в неделю, 35 учебных недель и на 68 часов в 11классе, 2 часа в неделю, 34 учебные недели.
Для итогового повторения и успешной подготовки к экзамену по математике, организуется повторение всех тем, изученных на средней и старшей ступенях, где решаются тестовые задания из материалов ЕГЭ: алгебраического содержания и функционального содержания, комбинаторики, тестовые задания геометрического содержания из материалов ЕГЭ.
При изучении курса математики на базовом уровне продолжается развитие содержательных линий: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа».
4. Описание ценностных ориентиров содержания учебного предмета
Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.
Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.
Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.
Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
История развития математического знания дает возможность пополнить запас историко- научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.
5. Личностные, метапредметные и предметные результаты освоения учебного
предмета
Алгебра и начала анализа
Личностные результаты обеспечивают ценностно-смысловую ориентацию учащихся, установление учащимися связи между учебной деятельностью и её мотивом. К личностным результатам освоения старшеклассниками программы по алгебре и началам анализа относятся:
сформированность представлений об основных этапах истории и наиболее важных современных тенденциях развития математической науки, о профессиональной деятельности учёных-математиков;
способность к эстетическому восприятию математических объектов, задач, решений, рассуждений;
сформированность потребности в самореализации в творческой деятельности, выражающаяся в креативности мышления, инициативе, находчивости, активности при решении математических задач;
потребность в самообразовании, готовность принимать самостоятельные решения.
Вклад изучения курса «Алгебра и начала математического анализа» в формирование межпредметных результатов освоения основной образовательной программы состоит:
в формировании понятийного аппарата математики и умения видеть приложения полученных математических знаний для описания и решения проблем в других дисциплинах, в окружающей жизни;
формировании интеллектуальной культуры, выражающемся в развитии абстрактного и критического мышления, умении распознавать логически некорректные высказывания, отличать гипотезу от факта, применять индуктивные и дедуктивные способы рассуждений, способности ясно, точно и грамотно формулировать и аргументированно излагать свои мысли в устной и письменной речи, корректности в общении;
формировании информационной культуры, выражающемся в умении осуществлять поиск, отбор, анализ, систематизацию и классификацию информации, использовать различные источники информации для решения учебных проблем;
формировании умения принимать решение в условиях неполной и избыточной информации;
формировании представлений о принципах математического моделирования и приобретении начальных навыков исследовательской деятельности;
формировании умения видеть различные стратегии решения задач, планировать и осуществлять деятельность, направленную на их решение, проверять и оценивать результаты деятельности, соотнося их с поставленными целями и личным жизненным опытом, а также публично представлять её результаты, в том числе с использованием средств информационных и коммуникационных технологий.
Предметные результаты на базовом уровне проявляются в знаниях, умениях, компетентностях, характеризующих качество (уровень) овладения обучающимися содержанием учебного предмета:
объяснять идеи и методы математики как универсального языка науки и техники, средства моделирования явлений и процессов;
обосновывать необходимость расширения числовых множеств (целые, рациональные, действительные, комплексные числа) в связи с развитием алгебры (решение уравнений, основная теорема алгебры);
описывать круг математических задач, для решения которых требуется введение новых понятий (степень, арифметический корень, логарифм; синус, косинус, тангенс, котангенс; арксинус, арккосинус, арктангенс, арккотангенс); производить тождественные преобразования, вычислять значения выражений, решать уравнения с радикалами, степенями, логарифмами и тригонометрическими функциями (в несложных случаях, с применением одной- двух формул и/или замены переменной), в том числе при решении практических расчётных задач из окружающего мира, включая задачи по социально-экономической тематике, и из области смежных дисциплин;
приводить примеры реальных явлений (процессов), в том числе периодических, количественные характеристики которых описываются с помощью функций; использовать готовые компьютерные программы для иллюстрации зависимостей; определять значение функции по значению аргумента; изображать на координатной плоскости графики зависимостей, заданных описанием, в табличной форме или формулой; описывать свойства функций с опорой на их графики (область определения и область значений, возрастание, убывание, периодичность, наибольшее и наименьшее значения функции, значения аргумента, при которых значение функции равно данному числу или больше (меньше) данного числа, поведение функции на бесконечности); перечислять и иллюстрировать, используя графики, свойства основных элементарных функций: линейной и квадратичной функций, степенных функций с целым показателем, корня квадратного и кубического, логарифмических и показательных, тригонометрических; соотносить реальные зависимости из окружающей жизни и из смежных дисциплин с элементарными функциями, делать выводы о свойствах таких зависимостей;
объяснять на примерах суть методов математического анализа для исследования функций и вычисления площадей фигур, ограниченных графиками функций; объяснять геометрический и физический смысл производной; вычислять производные многочленов; пользоваться понятием производной при описании свойств функций (возрастание/ убывание, наибольшее и наименьшее значения);
приводить примеры процессов и явлений, имеющих случайный характер; находить в простейших ситуациях из окружающей жизни вероятность наступления случайного события; составлять таблицы распределения вероятностей; вычислять математическое ожидание случайной величины;
осуществлять информационную переработку задачи, переводя информацию на язык математических символов, представляя содержащиеся в задачах количественные данные в виде формул, таблиц, графиков, диаграмм и выполняя обратные действия с целью извлечения информации из формул, таблиц, графиков и др.; исходя из условия задачи, составлять числовые выражения, уравнения, неравенства и находить значения искомых величин; излагать и оформлять решение логически правильно, с необходимыми пояснениями.
Геометрия
Личностные результаты обеспечивают ценностно-смысловую ориентацию учащихся, установление учащимися связи между учебной деятельностью и её мотивом. К личностным результатам освоения старшеклассниками программы по геометрии относятся:
сформированность представлений об основных этапах истории и наиболее важных современных тенденциях развития математической науки, о профессиональной деятельности учёных-математиков;
способность к эстетическому восприятию математических объектов, задач, решений, рассуждений:
сформированность потребности в самореализации в творческой деятельности, выражающаяся в креативности мышления, инициативе, находчивости, активности при решении математических задач;
потребность в самообразовании, готовность принимать самостоятельные решения.
Вклад изучения учебного предмета «Геометрия» в формирование метапредметных результатов освоения основной образовательной программы состоит:
в формировании понятийного аппарата математики и умения видеть приложения полученных математических знаний для описания и решения проблем в других дисциплинах, в окружающей жизни;
формировании интеллектуальной культуры, выражающемся в развитии абстрактного и критического мышления, умении распознавать логически некорректные высказывания, отличать гипотезу от факта, применять индуктивные и дедуктивные способы рассуждений, способности ясно, точно и грамотно формулировать и аргументированно излагать свои мысли в устной и письменной речи, корректности в общении;
формировании информационной культуры, выражающемся в умении осуществлять поиск, отбор, анализ, систематизацию и классификацию информации, использовать различные источники информации для решения учебных проблем;
умения принимать решение в условиях неполной и избыточной информации;
формировании представлений о принципах математического моделирования и приобретении начальных навыков исследовательской деятельности;
формировании умения видеть различные стратегии решения задач, планировать и осуществлять деятельность, направленную на их решение, проверять и оценивать результаты деятельности, соотнося их с поставленными целями и личным жизненным опытом, а также публично представлять её результаты, в том числе с использованием средств информационных и коммуникационных технологий.
Предметные результаты на базовом уровне проявляются в знаниях, умениях, компетентностях, характеризующих качество (уровень) овладения обучающимися содержанием учебного предмета:
использовать язык стереометрии для описания объектов окружающего мира;
использовать понятийный аппарат и логическую структуру стереометрии;
приводить примеры реальных объектов, пространственные характеристики которых описываются с помощью геометрических терминов и отношений: параллельности и перпендикулярности, равенства, подобия, симметрии;
иметь представление о многогранниках и телах вращения; распознавать на чертежах и моделях плоские и пространственные геометрические фигуры, соотносить трёхмерные объекты с их описаниями, чертежами, изображениями;
выполнять геометрические построения;
объяснять методы параллельного и центрального проектирования;
строить простейшие сечения геометрических тел;
исследовать и описывать пространственные объекты, для чего использовать: свойства плоских и пространственных геометрических фигур, методы вычисления их линейных элементов и углов (плоских и двугранных), формулы для вычисления площадей поверхностей пространственных фигур, формулы для вычисления объёмов многогранников и тел вращения;
проводить доказательства геометрических теорем; проводить письменные и устные логические обоснования при решении задач на вычисление и доказательство;
объяснять на примерах суть геометрических методов обоснования решения задач: методом от противного и методом перебора вариантов;
использовать в отношении геометрических фигур готовые компьютерные программы для построения, проведения экспериментов и наблюдений на плоскости и в пространстве; использовать программы, позволяющие проводить эксперименты и наблюдения динамически (в движении).
Требования к уровню подготовки выпускников
В результате изучения математики на базовом уровне ученик должен
Знать и понимать:
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира.
Алгебра
Уметь:
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- практических расчетов по формулам, включая формулы, содержание степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
- понимания взаимосвязи учебного предмета с особенностями профессий и профессиональной деятельности, в основе которых лежат знания по данному учебному предмету.
Функции и графики
Уметь:
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле
поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
- описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
Начала математического анализа
Уметь:
- вычислять производные и первообразные элементарных функций, используя справочные материалы;
- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
- вычислять в простейших случаях площади с использованием первообразной.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.
Уравнения и неравенства
Уметь:
- решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
- составлять уравнения и неравенства по условию задачи;
- использовать для приближенного решения уравнений и неравенств графический метод;
- изображать на координатной плоскости множества решений простейших уравнений и их систем.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
- построения и исследования простейших математических моделей.
Элементы комбинаторики, статистики и теории вероятностей
Уметь:
- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
- вычислять в простейших случаях вероятности событий на основе подсчета числа исходов.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- анализа реальных числовых данных, представленных в виде диаграмм, графиков;
- анализа информации статистического характера.
Геометрия
Уметь:
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела, выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
6. Содержание учебного курса
Обязательный минимум содержания основных образовательных программ
Алгебра
Корни и степени. Корень степени n1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем
. Свойства степени с действительным показателем.
Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.
Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.
Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.
Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства.
Арксинус, арккосинус, арктангенс числа.
Функции
Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.
Обратная функция. Область определения и область значений обратной функции. График обратной функции.
Степенная функция с натуральным показателем, ее свойства и график.
Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.
Тригонометрические функции, их свойства и графики; периодичность, основной период.
Показательная функция (экспонента), ее свойства и график.
Логарифмическая функция, ее свойства и график.
Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой у = х, растяжение и сжатие вдоль осей координат.
Начала математического анализа
Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.
Понятие о непрерывности функции.
Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции данной функции с линейной.
Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.
Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.
Уравнения и неравенства
Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.
Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.
Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.
Элементы комбинаторики, статистики и теории вероятностей
Табличное и графическое представление данных. Числовые характеристики рядов данных.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.
Геометрия
Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).
Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.
Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.
Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.
Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.
Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.
Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.
Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.
Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрии в окружающем мире.
Сечения куба, призмы, пирамиды.
Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.
Шар и сфера, их сечения, касательная плоскость к сфере.
Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.
Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.
Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.
7. Тематическое планирование и виды деятельности учащихся.
Тематическое планирование по алгебре, 10 класс
№ п/п | Тема | Количество часов | Контрольные работы |
1. | Тригонометрические функции | 28 | 2 |
2. | Тригонометрические уравнения | 10 | 1 |
3. | Преобразование тригонометрических выражений | 18 | 2 |
4. | Производная | 38 | 3 |
5. | Повторение | 11 | 1 |
| ИТОГО: | 105 | 9 |
Тематическое планирование по алгебре, 11 класс
№ п/п | Тема | Количество часов | Контрольные работы |
1 | Повторение курса 10 класса | 3 | |
2 | Интеграл | 12 | 1 |
3 | Степени и корни. Степенные функции | 20 | 2 |
4 | Показательная и логарифмическая функции. | 29 | 2 |
5 | Уравнения и неравенства. Системы уравнений и неравенств. | 20 | 1 |
6 | Элементы математической статистики, комбинаторики и теории вероятностей | 10 | 1 |
7 | Повторение | 8 | 7 |
| ИТОГО: | 102 | |
Тематическое планирование по геометрии, 10 класс
№ п/п | Тема | Количество часов | Контрольных работ |
1 | Введение | 3 | - |
2 | Параллельность прямых и плоскостей | 15 | 2 |
3 | Перпендикулярность прямых и плоскостей | 19 | 1 |
4 | Многогранники | 15 | 1 |
5 | Векторы в пространстве | 11 | 1 |
6 | Итоговое повторение | 7 | - |
| Итого: | 70 | 5 |
Тематическое планирование по геометрии, 11 класс
№ п/п | Тема | Количество часов | Контрольных работ |
1 | Метод координат в пространстве | 18 | 2 |
2 | Цилиндр, конус, шар | 20 | 1 |
3 | Объемы тел | 19 | 2 |
4 | Повторение | 11 | 1 |
| Итого: | 68 | 6 |
Уровень обучения: базовый.
Формы организации учебного процесса: индивидуальные, групповые, фронтальные, классные и внеклассные.
Система оценки качества знаний
1) Внутренняя экспертиза
Мониторинг уровня обученности осуществляется через следующие виды контроля:
- стартовый контроль:
- определения состояния вычислительных навыков, знание базового ядра;
- текущий контроль по результатам освоения тем в форме:
- контрольные работы (индивидуально – дифференцированные)
- тесты
- проверочные работы
- самостоятельные работы (обучающие и контролирующие);
- итоговый контроль в форме рубежной аттестации и в форме годовой контрольной работы.
2) Внешняя экспертиза
Внешняя экспертиза будет осуществляться через:
олимпиады
математические конкурсы
защита проектов и исследовательских работ.
В ходе преподавания математики в целях реализации личностно-ориентированного подхода в обучении обучающихся школы используются следующие образовательные технологии: здоровьесберегающие, информационно-коммуникационные, интерактивные; тестовые; уровневой дифференциации и др.
Нормы оценок по математике
Оценка письменных контрольных работ
«5»
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания материала).
«4»
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки)
допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки)
«3»
допущены более одной ошибки или двух-трех недочетов в выкладках, рисунках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.
«2»
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Оценка устных ответов
«5»
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического
задания;
продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно без наводящих вопросов учителя;
возможны одна-две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
«4»
Если он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившие математического содержания ответа;
допущены один-два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.
«3»
неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала;
имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задание обязательного уровня сложности по данной теме;
при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
«2»
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
8. Описание учебно-методического и материально-технического обеспечения
образовательного процесса
Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, а также информационно-коммуникативными средствами, экранно-звуковыми пособиями, техническими средствами обучения, учебно-практическим и учебно-лабораторным оборудованием.
В библиотечный фонд входят Стандарт по математике, примерные программы, авторские программы, комплекты учебников, рекомендованных или допущенных Министерством образования и науки Российской Федерации. В состав библиотечного фонда входят рабочие тетради, дидактические материалы, сборники контрольных и самостоятельных работ, практикумы по решению задач, соответствующие используемым комплектам учебников; сборники заданий, обеспечивающих диагностику и контроль качества обучения в соответствии с требованиями к уровню подготовки выпускников, закрепленными в Стандарте по математике; учебная литература, необходимую для подготовки докладов, сообщений, рефератов, творческих работ.
В комплект печатных пособий включены таблицы по математике, в которых представлены правила действий с числами, таблицы метрических мер, основные сведения о плоских и пространственных геометрических фигурах, основные математические формулы, соотношения, законы, графики функций.
Информационные средства обучения - мультимедийные обучающие программы и электронные учебные издания, ориентированные на систему дистанционного обучения либо имеющие проблемно-тематический характер и обеспечивающие дополнительные условия для изучения отдельных тем и разделов Стандарта. Эти пособия предоставляют техническую возможность построения системы текущего и итогового контроля уровня подготовки учащихся (в том числе в форме тестового контроля). Инструментальная среда предоставляет возможность построения и исследования геометрических чертежей, графиков функций, проведения числовых и вероятностно-статистических экспериментов.
Минимальный набор учебного оборудования включает:
1. Библиотечный фонд
-нормативные документы: Примерная программа среднего (полного) общего образования по математике, Планируемые результаты освоения программы среднего (полного) общего образования по математике;
-пособия для подготовки и/или проведения государственной аттестации по математике за курс основной школы;
-научная, научно-популярная, историческая литература;
-справочные пособия (энциклопедии, словари, справочники по математике и т.п.);
1. Алгебра и начала анализа10 -11кл. Учеб.для общеобразоват учреждений.- М.Мнемозина, 2011, Мордкович А.Г.
2. Алгебра и начала анализа 10 -11 кл. Задачник для общеобразоват учреждений. М.Мнемозина, 2011, Мордкович А.Г.
3. Настольная книга учителя математики. М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2013;
4. Геометрия, 10–11: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян,
В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2013.
5. Геометрия, 7 – 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян,
В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2013.
6. Б.Г. Зив. Дидактические материалы по геометрии для 10 класса. – М. Просвещение, 2013.
7. Ю.А. Глазков, И.И. Юдина, В.Ф. Бутузов. Рабочая тетрадь по геометрии для 10 класса. – М.: Просвещение, 2013.
8. Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2013.
9. С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2013.
10. А.П. Киселев. Элементарная геометрия. – М.: Просвещение, 1980;
11. Поурочные разработки по геометрии 10 класс (дифференцированный подход) – ООО «ВАКО», 2013
2.Печатные пособия
- таблицы по алгебре и геометрии для 10-11классов;
- портреты выдающихся деятелей математики.
3.Информационные средства
Программно-педагогические средства, реализуемые с помощью компьютера.
1. CD «1С: Репетитор. Математика» (КиМ).
2. CD «Геометрия не для отличников» (НИИ экономики авиационной промышленности).
4. CD «Математика. 5–11 классы. Практикум».
4. Цифровые образовательные ресурсы (ЦОР) для поддержки подготовки школьников.
1. Интернет-портал Всероссийской олимпиады школьников. – http://www.rusolymp.ru
2. Всероссийские дистанционные эвристические олимпиады по математике. –http://www.eidos.ru/olymp/mathem/index.htm
3. Информационно-поисковая система «Задачи». –http://zadachi.mccme.ru/easy
4. Задачи: информационно-поисковая система задач по математике. – http://zadachi.mccme.ru
5. Конкурсные задачи по математике: справочник и методы решения. –http://mschool.kubsu.ru/cdo/shabitur/kniga/tit.htm
6. Материалы (полные тексты) свободно распространяемых книг по математике. –http://www.mccme.ru/free-books
7. Математика для поступающих в вузы. –http://www.matematika.agava.ru
8. Выпускные и вступительные экзамены по математике: варианты, методика. –http://www.mathnet.spb.ru
9. Олимпиадные задачи по математике: база данных. –http://zaba.ru
10. Московские математические олимпиады. –http://www.mccme.ru/olympiads/mmo
11. Школьные и районные математические олимпиады в Новосибирске. –http://aimakarov.chat.ru/school/school.html
12. Виртуальная школа юного математика. –http://math.ournet.md/indexr.htm
13. Библиотека электронных учебных пособий по математике. –http://mschool.kubsu.ru
14. Образовательный портал «Мир алгебры». –http://www.algmir.org/index.html
15. Словари БСЭ различных авторов. –http://slovari.yandex.ru
16. Этюды, выполненные с использованием современной компьютерной 3D-графики, увлекательно и интересно рассказывающие о математике и ее приложениях. –http://www.etudes.ru
17. Заочная физико-математическая школа. –http://ido.tsu.ru/schools/physmat/index.php
18. Министерство образования РФ. –http://www.ed.gov.ru; http://www.edu.ru
19. Тестирование on-line. 5–11 классы. –http://www.kokch.kts.ru/cdo
20. Архив учебных программ информационного образовательного портала «RusEdu!». – http://www.rusedu.ru
21. Мегаэнциклопедия Кирилла и Мефодия. – http://mega.km.ru
22. Сайты энциклопедий. – http://www.rubricon.ru; http://www.encyclopedia.ru
23. Вся элементарная математика. – http://www.bymath.net
24. ЕГЭ по математике. – http://uztest.ru
№ п/п | Название сайта или статьи | Содержание | Адрес (URL) |
1. | Numbernut: все о математике | Материалы для изучения и преподавания математики в школе. Тематический сборник: числа, дроби, сложение, вычитание и пр. Теоретический материал, задачи, игры, тесты | http://www.numbernut.com/ |
2. | Math.ru: удивительный мир математики | Коллекция книг, видео-лекций, подборка занимательных математических фактов. Информация об олимпиадах, научных школах по математике. Медиатека | http://www.math.ru |
3. | EqWorld: мир математических уравнений | Информация о решениях различных классов алгебраических, интегральных, функциональных и других математических уравнений. Таблицы точных решений. Описание методов решения уравнений. Электронная библиотека | http://eqworld.ipmnet.ru/indexr.htm |
4. | Средняя математическая интернет-школа: страна математики | Учебные пособия по разделам математики: теория, примеры, решения. Задачи и варианты контрольных работ | http://www.bymath.net/ |
5. | Математический калейдоскоп: случаи, фокусы, парадоксы | Математика и математики, математика в жизни. Случаи и биографии, курьезы и открытия | http://mathc.chat.ru/ |
4.Экранно-звуковые пособия
-видеофильмы по истории развития математики, математических идей и методов.
5.Технические средства обучения
-мультимедийный компьютер;
-мультимедиапроектор;
-интерактивная доска.
6.Учебно-практическое и учебно-лабораторное оборудование
-комплект чертёжных инструментов: линейка, транспортир, угольник, циркуль.
-комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных),
-комплекты для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).