СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
Планирование по алгебре для 9 класса (базовый уровень) составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования. За основу взята авторская программа Математика: 5 – 11 классы / А.Г.Мерзляк, В.Б.Полонский, М.С.Якир, Е.В.Буцко. Планирование рассчитано на преподавание алгебры 4 часа в неделю
РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ (МОДУЛЬ «АЛГЕБРА»)
9 КЛАСС
(базовый уровень)
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа по алгебре для 9 класса (базовый уровень) составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образованиям на основе Фундаментального ядра содержания общего образования, Требований к результатам освоения основной образовательной программы основного общего образования. За основу взята Примерная программа основного общего образования по математике, а также авторская программа Математика: 5 – 11 классы / А.Г.Мерзляк, В.Б.Полонский, М.С.Якир, Е.В.Буцко (М., Вентана-Граф, 2014.
В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации (утв. распоряжением Правительства РФ от 24.12.2013), Программы развития и формирования универсальных учебных действий, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития учащихся, в том числе коммуникативных качеств личности.
Рабочая программа составлена в соответствии с Основной образовательной программой основного общего образования МАОУ «Центр образования № 13 имени Героя Советского Союза Н.А.Кузнецова».
Рабочая программа по алгебре для 9 класса представляет собой целостный документ, включающий пояснительную записку, планируемые результаты изучения предмета, содержание учебного предмета, тематическое планирование, учебно-методическое и материально-техническое обеспечение.
Программа соответствует учебнику «Алгебра 9 класс» / Мерзляк А.Г. - М., Вентана-Граф, 2017.
Данная программа конкретизирует содержание предметных тем, дает примерное распределение учебных часов по разделам курса, рекомендуемую последовательность изучения тем и разделов с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся.
Предлагаемая программа выполняет две основные функции:
информационно-методическая - позволяет получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами математики;
организационно-планирующая – предусматривает выделение этапов обучения, определения качественных и количественных характеристик учебного материала на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Курс алгебры 7 - 9 классов является базовым для математического образования и развития школьников. Алгебраические знания и умения необходимы для изучения геометрии в 7 - 9 классах, алгебры и математического анализа в 10 - 11 классах, а также изучения смежных дисциплин.
Практическая значимость школьного курса алгебры обусловлена тем, что его объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С ее помощью моделируются и изучаются явления и процессы, происходящие в природе.
Алгебра является одним из опорных предметов основной школы, так как она обеспечивает изучение других дисциплин, в частности предметов естественно-научного цикла, например, физики. Развитие логического мышления при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой деятельности и профессиональной подготовки школьников.
Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, формированию качеств мышления, необходимых для адаптации в современном информационном обществе.
Алгебра нацелена на формирование математического аппарата для решения задач математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка построения математических моделей, процессов и явлений реального мира. Одной из основных задач алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.
Алгебра, требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, развивает нравственные черты личности (настойчивость, целеустремленность, самостоятельность, ответственность, трудолюбие, дисциплину, творческую активность и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.
Изучение в алгебре функций, вероятности и статистики способствует расширению кругозора учащихся, знакомству их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.
Изучение алгебры позволяет формировать умения и навыки умственного труда – планирование работы, поиск рациональных путей ее выполнения, критическая оценка результатов. Использование в алгебре наряду с естественным языком нескольких математических дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства. В процессе обучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и емко, приобрести навыки четкого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить четкие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым, алгебра занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.
Изучение алгебры в 9 классе направлено на достижение следующих целей:
в направлении личностного развития
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие умения контролировать процесс учебной математической деятельности;
развитие математических способностей и интереса к математическому творчеству;
развитие способностей к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
в метапредметном направлении
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
овладение умением логически обосновывать то, что многие зависимости, обнаруженные путем рассмотрения частных случаев, имеют общее значение и распространяются на все фигуры определенного типа;
развитие познавательных интересов, интеллектуальных и творческих способностей учащихся;
развитие способностей к самостоятельному приобретению новых знаний и практических умений, умения управлять своей познавательной деятельностью.
в предметном направлении
умение работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую символику и терминологию;
овладение базовым понятийным алгебраическим аппаратом, необходимым для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
умение применять алгебраический аппарат для решения математических задач и задач из смежных дисциплин;
выявление практической значимости науки, ее многообразных приложений и смежных дисциплинах и повседневной деятельности людей;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Задачи формулируются в соответствии с ФГОС и с учетом особенностей общеобразовательного учреждения. Общими задачами изучения курса алгебры в 9 классе являются:
овладеть символьным языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений;
формировать специфические для математики качества мышления, необходимые человеку для полноценного функционирования в современном обществе, и в частности логического, алгоритмического и эвристического мышления;
продолжить формирование у учащихся способностей к организации своей учебной деятельности посредством освоения личностных, познавательных, регулятивных и коммуникативных универсальных учебных действий;
продолжить приобретение опыта самостоятельной математической деятельности по получению нового знания, его преобразованию и применению;
продолжить всестороннее развитие обучаемых, формирование у них способностей к самоизменению и саморазвитию;
способствовать развитию нравственных качеств, создающих условия для успешного вхождения в культуру и созидательную жизнь общества;
способствовать созданию здоровьесберегающей информационно-образовательной среды.
ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА
В курсе алгебры 9 класса условно выделяются следующие содержательные линии: алгебра, множества, функции, элементы прикладной математики, элементы комбтнаторики и теории вероятностей, алгебра в историческом развитии.
Содержание раздела «Алгебра» формирует знания о математическом языке, необходимые для решения математических задач, задач из смежных дисциплин, а также практических задач. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений, систем уравнений и неравенств. Материал данного раздела представлен в аспекте, способствующем формированию у учащихся умения пользоваться алгоритмами. Существенная роль при этом отводится развитию алгоритмического мышления - важной составляющей интеллектуального развития человека.
Содержание раздела «Множества» нацелено на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Материал раздела развивает понятие о числе, которое связано с изучением действительных чисел.
Цель содержания раздела «Функции» - получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования процессов и явлений окружающего мира. Соответствующий материал способствует развитию воображения и творческих способностей учащихся, умению использовать различные языки математики (словесный, символический, графический).
Содержание раздела «Элементы прикладной математики» раскрывает прикладное и практическое значение математики в современном мире.
Материал раздела «Элементы комбинаторики и теории вероятностей» способствует развитию понимания вероятностного характера реальных зависимостей.
Раздел «Алгебра в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, создания культурно-исторической среды обучения.
ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
Согласно действующему в ОУ учебному плану программа ориентирована на детей 13 – 15 лет и составлена с учетом их возрастных особенностей. Система уроков сориентирована не столько на передачу готовых знаний, сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологически готовой к самообразованию.
Законом «Об образовании в РФ» учителю предоставляется право самостоятельного выбора методических путей и приемов решения образовательных и воспитательных задач. Рациональная система методов и приемов обучения, ее оптимизация с учетом возрастных особенностей учащихся, уровня их математической подготовки является важным условием правильной организации учебно-воспитательного процесса. В зависимости от указанных факторов необходимо сбалансировать сочетание традиционных и инновационных методов обучения, оптимизировать применение объяснительно-иллюстративных и эвристических методов, рационально использовать современные технические средства. Учебный процесс должен быть сориентирован на оптимальное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач. Внимание учителя направлено на развитие у учащихся навыков умственного труда (планирование своей работы, поиск рациональных путей ее выполнения, критическую оценку результатов), культуры устной и письменной математической речи.
В ходе изучения курса алгебры 9 класса обучающиеся должны развить умения по формированию собственного алгоритма решения познавательных задач: формулировать проблему и цели своей работы, определять адекватные способы и методы решения задачи, прогнозировать ожидаемый результат и сопоставлять его с собственными математическими знаниями. Обучающиеся должны научиться представлять результаты индивидуальной и групповой познавательной деятельности в формах конспекта, реферата, презентации.
Одной из главных особенностей курса алгебры является то, что в нем реализуется взаимосвязь принципов научности и доступности и уделяется особое внимание обеспечению прочного усвоения основ математических знаний всеми учащимися. Преподавание ведется с учетом принципов проблемного, развивающего, опережающего обучения. Такая особенность курса как практическая направленность служит стимулом для развития у учащихся интереса к алгебре, а также основой для формирования осознанных математических навыков и умений.
Принципиальным положением организации математического образования является дифференциация и индивидуализация обучения. Это означает, что осваивая курс математики, одни школьники в своих результатах ограничиваются уровнем базовой обязательной подготовки, зафиксированным в образовательном стандарте, другие, в соответствии со своими склонностями и способностями достигают более высоких результатов. при этом каждый имеет право самостоятельно решить ограничиться базовым уровнем или двигаться дальше. Развитие интереса к математике является важнейшей задачей учителя. Школьники, проявляющие склонности к математике, должны получать индивидуальные задания (в первую очередь нестандартные математические задачи), их следует привлекать к оказанию помощи одноклассникам, к участию в математических кружках, конкурсах, олимпиадах; желательно рекомендовать им дополнительную литературу по предмету.
Особое место в овладении курсом отводится работе по формированию навыков саморегуляции: самоконтроля и самопроверки. Текущий контроль осуществляется после изучения каждого основного раздела, форма проведения – самостоятельная работа, контрольная работа, математический диктант, тест и т.п. В конце года оценка результатов обучения проводится в виде итоговой контрольной работы, которая включает задания по основным вопросам курса алгебры 9 класса.
Формы работы – фронтальная, индивидуальная, групповая, парная.
Педагогическим инструментом реализации поставленных целей в курсе алгебры 9 класса являются следующие технологии - технология деятельностного метода, технология проблемного диалога, технология продуктивного чтения, технология развития критического мышления, технологии оценивания.
МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ
Базисный учебный (образовательный) план на изучение алгебры в 9 классе в основной школе отводит 3 учебных часа в неделю в течение учебного года. За счет компонента образовательного учреждения на изучение алгебры в 9 классе отводится на 1 ч больше. Таким образом, рабочая программа рассчитана на 136 часов. Дополнительный час отводится на овладение материалом сверх базового уровня подготовки с целью качественной подготовки к ОГЭ.
В рабочей программе предусмотрена возможность для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий. В течение года возможны коррективы рабочей программы, связанные с объективными причинами.
ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ КУРСА АЛГЕБРЫ 9 КЛАССА
Программа выдвигает на первый план достижение учащимися следующих результатов освоения курса алгебры 9 класса:
личностные результаты:
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
формирование целостного мировоззрения, представление о математической науке как сфере человеческой деятельности, об этапах развития, о её значимости для развития цивилизации;
креативность мышления, инициатива, находчивость, активность при решении математических задач;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;
формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, готовности и способности вести диалог с другими людьми и достигать в нём взаимопонимания;
освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и (учебные пособия, справочники, ресурсы интернета и т.п.)
формирование ответственного отношения к учению, готовности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
формирование умений самостоятельно работать с различными источниками информации;
воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки.
метапредметные результаты:
регулятивные универсальные учебные действия
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
умение оценивать правильность выполнения учебной задачи, ее объективную трудность и собственные возможности её решения;
умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
умение самостоятельно планирвоать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.
познавательные универсальные учебные действия:
умение видеть математическую задачу в контексте проблемной ситуации, в других дисциплинах, в окружающей жизни;
формирование первоначальных представлений об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
умение находить необходимую информацию в различных источниках (в справочниках, литературе, Интернете), представлять информацию в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
умение понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и т.п.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы для решения учебных задач, понимать необходимость их проверки;
осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
умения устанавливать причинно-следственные связи, строить логические рассуждения, умозаключения (индуктивные, дедуктивные, по аналогии), делать выводы;
умения создавать, применять и преобразовывать знакосимволические средства, модели и схемы для решения учебных и познавательных задач;
формирование и развитие ИКТ-компетентности;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.
коммуникативные универсальные учебные действия:
умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов;
формулировать, аргументировать и отстаивать своё мнение.
Предметные результаты обучения:
осознание значения математики для повседневной жизни человека;
представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики (словесный, символьный, графический, табличный), дополнительными источниками информации; точно и грамотно выражать свои мысли в устной и письменной речи;
умение опернировать понятиями по основным разделам содержания, умение проводить доказательства математических утверждений;
умение анализировать, структурировать и оценивать изученный предметный материал;
практически значимые математические умения и навыки, способность их применения к решению математических и нематематических задач.
УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ КУРСА
№ п/п | Название темы, раздела | Кол-во часов на тему | Кол-во контр. работ |
| Повторение материала алгебры 8 класса | 2 | |
1 | Неравенства | 24 | 2 |
2 | Квадратичная функция | 40 | 2 |
3 | Элементы прикладной математики | 28 | 2 |
4 | Числовые последовательности | 24 | 1 |
| Обобщающее повторение за курс алгебры 7 – 9 классов | 18 | 1 |
| Всего | 136 | 8 |
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Неравенства (24 ч)
Числовые неравества. Основные свойства числовых неравенств. Сложение и умножение числовых неравенств. Оценивание значения выражения.
Неравенства с одной переменной. Решение линейных неравенств с одной переменной. Числовые промежутки. Системы линейных неравенств с одной переменной.
Контрольная работа № 1 «Числовые неравенства»
Контрольная работа № 2 «Неравенства с одной переменной»
Квадратичная функция (40 ч)
Повторение и расширение сведений о функции. Из истории развития понятия «Функция». Свойства функции. Построение графика функции у = kf(х). Построение графика функции у=f(х)+b и у = f(х+а). Квадратичная функция, ее график и свойства.
Решение квадратных неравенств. Системы уравнений с двумя переменными. Рациональные неравенства. Системы рациональных неравенств.
Контрольная работа № 3 «Функция. Квадратичная функция»
Контрольная работа № 4 «Решение квадратных неравенств. Системы уравнений с двумя переменными»
Элементы прикладной математики (28 ч)
Математическое моделирование. Процентные расчеты. Абсолютная и относительная погрешности. Основные правила комбинаторики. Частота и вероятность случайного события. Классическое определение вероятности. Начальные сведения о статистике.
Контрольная работа № 5 «Элементы прикладной математики»
Контрольная работа № 6 «Вероятность. Начальные сведения о статистике»
Числовые последовательности (24 ч)
Числовые последовательности.
Арифметическая прогрессия. Сумма n первых членов арифметической прогрессии.
Геометрическая прогрессия. Сумма n первых членов геометрической прогрессии. Сумма бесконечной геометрической прогрессии, у которой модуль знаменателя меньше 1.
Контрольная работа № 7 «Числовые последовательности»
Обобщающее повторение за курс алгебры 7 - 9 классов ( 18 ч )
Контрольная работа № 8 (итоговая)
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ АЛГЕБРЫ В 9 КЛАССЕ
В результате изучения курса алгебры 9 класса:
ученик научится:
оперировать базовым понятийным апаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики (словесный, символьный, графический, табличный), дополнительными источниками информации; точно и грамотно выражать свои мысли в устной и письменной речи;
понимать особенность десятичной системы счисления;
выражать числа в эквивалентных формах, выбирая наиболее подходящую запись в зависимости от конкретной ситуации;
сравнивать и упорядочивать рациональные, иррациональные, действительные числа;
выполнять вычисления с действительными числами, сочетая устные и письменные приемы вычислений, применение калькулятора;
использовать начальные представления о множестве действительных чисел;
владеть понятием квадратного корня, применять его в вычислениях;
владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
выполнять преобразования выражений, содержащих степени с целым показателем и квадратные корни;
выполнять тождественные преобразования рациональных выражений на основе правил действий над алгебраическими дробями, применять их для решения математических задач и задач из смежных дисциплин;
выполнять разложение квадратного трехчлена на линейные множители;
решать квадратные, дробные уравнения и уравнения, приводимые к квадратным уравнениям;
понимать уравнение как простейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
применять графические представления для исследования рациональных уравнений;
понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
решать линейные неравенства с одной переменой, квадратные неравенства с опорой на графические представления и метод интервалов;
применять аппарат неравенств для решения задач из различных разделов курса;
понимать и использовать функциональные понятия и язык (термины, символические обозначения);
строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;
понимать и использовать язык последовательностей;
применять формулы, связанные с арифметической и геометрической прогрессией, к решению задач, в том числе из реальной жизни;
составлять математические модели реальных ситуаций и решать прикладные задачи;
проводить процентные расчёты, применять формулу сложных процентов для решения задач;
использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин;
представлять данные в виде таблиц, круговых и столбчатых диаграмм, графиков;
использовать простейшие способы представления и анализа статистических данных: среднее значение, мода, размах, медиана выборки.
ученик получит возможность научиться:
использовать приемы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ;
развить представления о числах и числовых системах от натуральных до действительных, о роли вычислений в человеческой практике;
выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приемов;
применять тождественные преобразования для решения задач из различных разделов курса;
овладеть специальными приемами решения уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
применять графические представления для исследования уравнений и неравенств, содержащих параметры;
проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно заданные, с «выколотыми» точками и т.п.);
использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса;
решать комбинированные задачи с применением формул n-го члена и суммы n первых членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств.
УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
Для учителя
Фундаментальное ядро содержания общего образования / под ред. В.В. Козлова, А.М. Кондакова. — М. : Просвещение, 2009.
Федеральный государственный образовательный стандарт основного общего образования.
Формирование универсальных учебных действий в основной школе : система заданий / А.Г. Асмолов, О.А. Карабанова. — М. : Просвещение, 2010.
Программа Математика: 5 – 11 классы / А.Г.Мерзляк, В.Б.Полонский, М.С.Якир, Е.В.Буцко (М., Вентана-Граф, 2014.
Мерзляк А.Г. Алгебра : 9 класс : учебник для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, М.С.Якир. — М. : Вентана-Граф, 2017.
Мерзляк А.Г. Алгебра : 9 класс : самостоятельные и контрольные работы : пособие для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, М.С.Якир. — М. : Вентана-Граф, 2017.
Буцко Е.В. Алгебра : 9 класс : методическое пособие / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. : Вентана-Граф, 2017.
Для учащихся
Мерзляк А.Г. Алгебра : 9 класс : учебник для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, М.С.Якир. — М. : Вентана-Граф, 2017.
Мерзляк А.Г. Алгебра : 9 класс : самостоятельные и контрольные работы : пособие для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, М.С.Якир. — М. : Вентана-Граф, 2017.
Агханов Н.Х., Подлипский О.К. Математика : районные олимпиады : 6–11 классы. — М. : Просвещение, 1990.
Гаврилова Т.Д. Занимательная математика : 5–11 классы. — Волгоград : Учитель, 2008.
Левитас Г.Г. Нестандартные задачи по математике. — М. : ИЛЕКСА, 2007.
Интернет-ресурсы
Министерство образования и науки РФ. http://www.mon.gov.ru/
Федеральное государственное учреждение «Государственный научно-исследовательский институт информационных технологий и телекоммуникаций». http://www.informika.ru/
Тестирование on-line: 5–11 классы. http://www.kokch.kts.ru/cdo/
Путеводитель «В мире науки» для школьников. http://www.uic.ssu.samara.ru/~nauka/
Мегаэнциклопедия Кирилла и Мефодия. http://mega.km.ru/
Сайт энциклопедий. http://www.encyclopedia.ru/
Технические средства обучения:
ПК учителя
Интерактивная доска
Мультимедийный проектор, колонки акустические, экран
Интерактивный диск «Математика 9 класс»
Калькулятор
Учебно-практическое оборудование:
Таблицы по алгебре для 9 класса
Портреты математиков
Дидактический раздаточный материал
12
КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
УЧЕБНОГО МАТЕРИАЛА ПО АЛГЕБРЕ
9 класс
Учебник: Алгебра 9 класс (А.Г.Мерзляк, В.Б.Полонский, М.С.Якир)
№ урока | Тема урока | Кол-во часов | Дата проведения | Планируемые результаты | Вид контроля | |||||||||
| | Предметные | Метапредметные | Личностные |
| |||||||||
Повторение матерала алгебры 8 класса (2 ч) | ||||||||||||||
1 | Алгебраические выражения. Преобразование алгебраических выражений | 1 |
|
| Преобразовывать рациональные выражения, применяя алгоритмы раскрытия скобок, умножения многочленов, формулы сокращенного умножения | Регулятивные УУД: Умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Познавательные УУД: Умения устанавливать причинно-следственные связи, строить логические рассуждения, делать выводы. Коммуникативные УУД: Работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов. | Критичность мышления. Умение контролировать процесс и результат учебной математической деятельности. Ответственное отношение к учению. Воля и настойчивость в достижении цели. Аргументировать решение, проводить самооценку собственных действий. |
| ||||||
2 | Решение уравнений, неравенств | 1 |
|
| Решать квадартные уравнений, уравнения, к ним приводящиеся, линейные и квадратные неравенства | |||||||||
Глава 1. Неравенства ( 24ч ) | ||||||||||||||
3 – 4 | Числовые неравенства | 2 |
|
| Распзнавать и приводить примеры числовых неравенств. Формулировать определение сравнения двух чисел Доказывать числовые неравенства | Познавательные УУД: обрабатывают и передают информацию устным, письменным и символьным способами; владеют смысловым чтением; представляют информацию в разных формах (текст, графика, символы); устанавливают аналогии для понимания закономерностей, используют их в решении задач; осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку; применяют полученные знания при решении различного вида задач Регулятивные УУД: выделяют и осознают то, что уже усвоено и что еще подлежит усвоению; критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию; оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя; самостоятельно составляют алгоритм деятельности при решении учебной задачи; исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей; работая по плану, сверяют свои действия с целью, вносят корректировки; самостоятельно контролируют своё время и управляют им Коммуникативные УУД: формулируют собственное мнение и позицию, задают вопросы, слушают собеседника; приводят аргументы в пользу своей точки зрения, подтверждают ее фактами; своевременно оказывают необходимую взаимопомощь сверстникам; сотрудничают с одноклассниками при решении задач; умеют выслушать опонента; формулируют выводы; с достаточной полнотой и точностью выражают свои мысли посредством письменной речи | Осознают роль ученика, осваивают личностный смысл учения. Проявляют активность и креативность мышления при подготовке иллюстраций изучаемых понятий. Осуществялют выбор действий в однозначных и неоднозначных ситуациях, комментируют и отстаивают свой выбор. Осваивают культуру работы с учебником для поиска информации. Понимают обсуждаемую информацию, смысл данной информации в собственной жизни. Создают образ целостного мировоззрения при решении математических задач. Адекватно оценивают результаты работы с помощью критериев оценки. | Матем. диктант | ||||||
5 – 7 | Основные свойства числовых неравенств | 3 |
|
| Формулировать свойства числовых неравенств Применять свойства числовых неравенств при сравнении выражений | Сам.раб | ||||||||
8 – 9 | Сложение и умножение числовых неравенств | 2 |
|
| Формулировать определение сложения и умножения числовых неравенств Применять сложение и вычитание числовых неравенств при сравнении выражений. | Сам.раб | ||||||||
10 – 11 | Оценивание значения выражения | 2 |
|
| Распознавать и приводить примеры двойных неравенств. Оценивать значение выражения | Тесты | ||||||||
12 | Контрольная работа № 1 «Числовые неравенства» | 1 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Контр.раб | ||||||||
13 – 14 | Неравенства с одной переменной | 2 |
|
| Распознавать и приводить примеры неравенств с одной переменной. Формулировать определение решения неравенств с одной переменной |
| ||||||||
15 – 18 | Решение линейных неравенств с одной переменной . Числовые промежутки | 4 |
|
| Распознавать и приводить примеры линейных неравенств, равносильных неравенств. Формулировать определения равносильных неравенств, неравенств-следствий. Решать линейные неравества. Записывать решения неравенств в виде числовых промежутков | Сам.раб | ||||||||
19 – 23 | Системы линейных неравенств с одной переменной | 5 |
|
| Распознавать системы линейных неравенств с одной переменной. Формулировать опреледение решения системы неравенств с одной переменной. Решать системы линейныз\х неравенств с одной переменной, записывать решения в виде числовых промежутков. | Сам.раб | ||||||||
24 | Решение задач по теме «Неравенства и системы неравенств с одной переменной» | 1 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. |
| ||||||||
25 | Контрольная работа № 2 «Неравенства с одной переменной» | 1 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Контр.раб | ||||||||
26 | Обобщение темы «Неравенства» | 1 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. |
| ||||||||
Глава 2. Квадратичная функция ( 40 ч ) | ||||||||||||||
27 – 29 | Повторение и расширение сведений о функции | 3 |
|
| Описывать понятие функции, способы задания функции Формулируют определение графика функции | Познавательные УУД: Обрабатывают информацию и передают ее устным, письменным, графическим и символьным способами. Устанавливают аналогии для понимания закономерностей, используют их в решении задач. Применяют полученные знания при решении различного вида задач. Строят логически обоснованное рассуждение с установлением причинно-следственных связей. Структурируют знания, определяют основную и второстепенную информацию. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. Владеют смысловым чтением. Анализируют (в т.ч. выделяют главное, разделяют на части) и обобщают. Регулятивные УУД: Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя. Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию. Исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей. Планируют алгоритм выполнения задания, корректируют работу по ходу выполнения с помощью учителя и ИКТ средств. Применяют установленные правила в планировании способа решения. Работая по плану, сверяют свои действия с целью, вносят корректировки. Самостоятельно составляют алгоритм деятельности при решении учебной задачи. Выделяют и осознают то, что уже усвоено и что еще подлежит усвоению. Выбирают действия в соответствии с поставленной задачей и условиями ее реализации, самостоятельно оценивают результат. Прилагают волевые усилия и преодолевают трудности и препятствия на пути достижения целей. Самостоятельно контролируют своё время и управляют им. Коммуникативные УУД: Грамотно и аргументировано излагают свои мысли, проявляют уважительное отношение к мнениям других людей. Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника. Проектируют и формируют учебное сотрудничество с учителем и сверстниками. Отстаивают свою точку зрения, подтверждают фактами. Предвидят появление конфликтов при наличии различных точек зрения. Принимают точку зрения другого. Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы. Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами. Своевременно оказывают необходимую взаимопомощь сверстникам. Верно используют в устной и письменной речи математические термины. Дают адекватную оценку своему мнению. С достаточной полнотой и точностью выражают свои мысли посредством письменной речи. | Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий. Осознают роль ученика, осваивают личностный смысл учения. Создают образ целостного мировоззрения при решении математических задач. Понимают обсуждаемую информацию, смысл данной информации в собственной жизни. Осваивают культуру работы с учебником, поиска информации. Проявляют мотивацию к познавательной деятельности, в том числе при решении задач с практическим содержанием. Проявляют познавательную активность, творчество. Адекватно оценивают результаты работы с помощью критериев оценки. Осуществляют выбор действий в однозначных и неоднозначных ситуациях, комментируют и оценивают свой выбор.
| Мат.дикт | ||||||
30 – 32 | Свойства функции | 3 |
|
| Формулируют определение нуля функции, промежутков знакопостоянства, промежутков монотонности, четной и нечетной функции, наибольшего и наименьшего значения | Мат.дикт | ||||||||
33 – 35 | Построение графика функции у = kf(х) | 3 |
|
| Формулируют правило построения графика функции с помощью преобразования вида у = kf(х). Строят графики функций с помощью данного преобразования | Практ.раб | ||||||||
36 – 38 | Построение графика функции у=f(х)+b и у = f(х+а). | 3 |
|
| Формулируют правило построения графика функции с помощью преобразования вида у=f(х)+b и у = f(х+а). Строят графики функций с помощью данного преобразования. | Практ.раб. | ||||||||
39 – 42 | Квадратичная функция, ее график и свойства | 4 |
|
| Формулируют определение квадратичной функции Строят график квадратичной функции Описывают свойства квадратичной функции по графику | Практ.раб | ||||||||
43 – 45 | Решение задач по теме «Функция. Квадратичная функция» | 3 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. | Тесты | ||||||||
46 | Контрольная работа № 3 «Функция. Квадратичная функция» | 1 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Контр.раб | ||||||||
47 – 51 | Решение квадратных неравенств | 5 |
|
| Формулируют определение квадратного неравенства, свойства квадратичной функции. Описывают метод интервалов Решают квадратные неравенства графическим методом и методом интервалов | Сам.раб | ||||||||
52 – 56 | Системы уравнений с двумя переменными | 5 |
|
| Формулируют определение решения уравнения с двумя переменными и системы уравнений с двумя переменными. Описывают методы решения систем уравнений с двумя переменными: графический, сложение, подстановка, замена переменных. Решают системы уравнений с двумя переменными | Сам.раб | ||||||||
57 – 59 | Рациональные неравенства | 3 |
|
| Распознают и приводят примеры рациональных неравенств. Описывают методы решения рациональных неравенств. Решают рациональные неравенства | Практ.раб | ||||||||
60 – 62 | Системы рациональных неравенств | 3 |
|
| Распознают и приводят примеры систем рациональных неравенств. Описывают методы решения систем рациональных неравенств. Решают системы рациональные неравенства | Практикум | ||||||||
63 – 64 | Решение задач по теме «Решение квадратных неравенств. Системы уравнений с двумя переменными» | 2 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. | Тесты | ||||||||
65 | Контрольная работа № 4 «Решение квадратных неравенств. Системы уравнений с двумя переменными» | 1 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Контр.раб | ||||||||
66 | Обобщение темы «Квадратичная функция» | 1 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. |
| ||||||||
Глава 3. Элементы прикладной математики ( 28 ч ) | ||||||||||||||
67 – 71 | Математическое моделирование | 5 |
|
| Приводят примеры математических моделей реальных ситуаций. Решают текстовые задачи с помощью математической модели и интерпретируют полученные результаты | Познавательные УУД: Восстанавливают предметную ситуацию, описанную в задаче. Обрабатывают информацию и передают ее устным, письменным, графическим и символьным способами. Устанавливают аналогии для понимания закономерностей, используют их в решении задач. Применяют полученные знания при решении различного вида задач. Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей. Регулятивные УУД: Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя. Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию. Применяют установленные правила в планировании способа решения. Работая по плану, сверяют свои действия с целью, вносят корректировки. Прилагают волевые усилия и преодолевают трудности и препятствия на пути достижения целей. Самостоятельно контролируют своё время и управляют им. Коммуникативные УУД: Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника. Отстаивают свою точку зрения, подтверждают фактами. Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы. Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами. | Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий. Демонстрируют мотивацию к познавательной деятельности. Осознают роль ученика, осваивают личностный смысл учения. Создают образ целостного мировоззрения при решении математических задач. Осваивают культуру работы с учебником, поиска информации. Адекватно оценивают результаты работы с помощью критериев оценки. | Сам.раб | ||||||
72 – 75 | Процентные расчеты | 4 |
|
| Приводят примеры прикладных задач. Описывают этапы решениея задач на проценты. Поясняют и записывают формулу сложных процентов. проводят процентные расчеты с использованием формулы сложных процентов. | Практикум | ||||||||
76 – 77 | Абсолютная и относительная погрешности | 2 |
|
| Приводят примеры приближенных величин. Формулируют определение абсолютной и относительной погреше=ности | Практ.раб | ||||||||
78 | Контрольная работа № 5 «Элементы прикладной математики» | 1 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Контр.раб. | ||||||||
79 – 81 | Основные правила комбинаторики | 3 |
|
| Формулируют комбинаторные правила сложения и произведения. Применяют правила при нахождении числа возможных вариантов. | Мат.дикт | ||||||||
82 – 84 | Частота и вероятность случайного события | 3 |
|
| Приводят примеры и формулируют определения случайных, возможных и достоверных событий. Поясняют и записывают формулу частоты случайного события. | Практ.раб | ||||||||
85 – 87 | Классическое определение вероятности | 3 |
|
| Формулируют определение вероятности события. Находят вероятность случайного события | Сам.раб | ||||||||
88 – 90 | Начальные сведения о статистике | 3 |
|
| Описывают статистическую оценку вероятности случайного события | Практ.раб | ||||||||
91 – 92 | Решение задач по теме «Вероятность. Начальные сведения о статистике» | 2 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. | Тесты | ||||||||
93 | Контрольная работа № 6 «Вероятность. Начальные сведения о статистике» | 1 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Контр.раб | ||||||||
94 | Обобщение темы «Элементы прикладной математики» | 1 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. |
| ||||||||
Глава 4. Числовые последовательности ( 24 ч ) | ||||||||||||||
95 – 97 | Числовые последовательности | 3 |
|
| Приводят примеры последовательностей, числовых последовательностей. Описывают понятия последовательности, члена последовательности, конечной и бесконечной последовательности, способы задания последовательностей. Вычисляют члены последовательности,ю заданной формулой п-ого члена или рекуррентно. | Познавательные УУД: Обрабатывают информацию и передают ее устным, письменным, графическим и символьным способами. Устанавливают аналогии для понимания закономерностей, используют их в решении задач. Применяют полученные знания при решении различного вида задач. Строят логически обоснованное рассуждение, включающее установление причинно-следственных связей. Владеют смысловым чтением. Регулятивные УУД: Оценивают степень и способы достижения цели в учебных ситуациях, исправляют ошибки с помощью учителя. Критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию. Планируют алгоритм выполнения задания, корректируют работу по ходу выполнения с помощью учителя и ИКТ средств. Работая по плану, сверяют свои действия с целью, вносят корректировки. Самостоятельно контролируют своё время и управляют им. Самостоятельно составляют алгоритм деятельности при решении учебной задачи. Применяют установленные правила в планировании способа решения. Прилагают волевые усилия и преодолевают трудности и препятствия на пути достижения целей. Коммуникативные УУД: Формулируют собственное мнение и позицию, задают вопросы, слушают собеседника. Проектируют и формируют учебное сотрудничество с учителем и сверстниками. Отстаивают свою точку зрения, подтверждают фактами. Предвидят появление конфликтов при наличии различных точек зрения. Принимают точку зрения другого. Сотрудничают с одноклассниками при решении задач; умеют выслушать оппонента. Формулируют выводы. С достаточной полнотой и точностью выражают свои мысли посредством письменной речи. Своевременно оказывают необходимую взаимопомощь сверстникам. Верно используют в устной и письменной речи математические термины.. Приводят аргументы в пользу своей точки зрения, подтверждают ее фактами. Дают адекватную оценку своему мнению | Проявляют интерес к креативной деятельности, активности при подготовке иллюстраций изучаемых понятий. Демонстрируют мотивацию к познавательной деятельности. Осознают роль ученика, осваивают личностный смысл учения. Создают образ целостного мировоззрения при решении математических задач. Проявляют познавательную активность, творчество. Адекватно оценивают результаты работы с помощью критериев оценки. Осуществляют выбор действий в однозначных и неоднозначных ситуациях, комментируют и оценивают свой выбор. Осваивают культуру работы с учебником, поиска информации. Адекватно оценивают результаты работы с помощью критериев оценки. | Мат.дикт. | ||||||
98 – 101 | Арифметическая прогрессия | 4 |
|
| Приводят примеры арифметической прогрессии Формулируют определение и сворйства членов арифметической прогрессии. Записывают и доказывают формулу общего члена арифметической прогрессии. Находят по формуле неизвестные элементы прогрессии. | Сам.раб | ||||||||
102 -105 | Сумма n первых членов арифметической прогрессии | 4 |
|
| Записывают и доказывают формулу суммы первых п членов арифметической прогрессии Находят по формуле неизвестные элементы прогрессии. | Сам.раб. | ||||||||
106 –108 | Геометрическая прогрессия.
| 3 |
|
| Приводят примеры геометрической прогрессии. Формулируют определение и свойства членов геометрической прогрессии. Задают геометрическую прогрессию рекуррентно. Записывают и доказывают формулу общего члена геометрической прогрессии. Находят по формуле неизвестные элементы прогрессии. | Сам.раб | ||||||||
109 -112 | Сумма n первых членов геометрической прогрессии. | 4 |
|
| Записывают и доказывают формулу суммы первых п членов геометрической прогрессии Находят по формуле неизвестные элементы прогрессии. | Сам.раб | ||||||||
113 -115 | Сумма бесконечной геометрической прогрессии, у которой модуль знаменателя меньше 1. | 3 |
|
| Записывают формулу суммы бесконечно убывающей геометрической прогрессии. Находят по формуле неизвестные элементы прогрессии. Представляют бесконечные периодические дроби в виде обыкновенных. | Практ.раб | ||||||||
116 | Решение задач по теме «Числовые последовательности» | 1 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. |
| ||||||||
117 | Контрольная работа № 7 «Числовые последовательности» | 1 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Контр.раб. | ||||||||
118 | Обобщение темы «Числовые последовательности» | 1 |
|
| Решают задачи по теме. Осуществляют сравнение, извлекают необходимую информацию, переформулируют условие, строят логическую цепочку. |
| ||||||||
Обобщающее повторение за курс алгебры 7 – 9 классов ( 18 ч ) | ||||||||||||||
119 -121 | Функциональные зависимости | 3 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Познавательные УУД: обрабатывают и передают информацию устным, письменным и символьным способами; устанавливают аналогии для понимания закономерностей, используют их в решении задач; применяют полученные знания при решении различного вида задач Регулятивные УУД: осуществляют самоконтроль, проверяя ответ на соответствие условию; исследуют ситуации, требующие оценки действия в соответствии с поставленной задачей; самостоятельно контролируют своё время и управляют им Коммуникативные УУД: формулируют собственное мнение и позицию; своевременно оказывают необходимую взаимопомощь сверстникам; с достаточной полнотой и точностью выражают свои мысли посредством письменной речи | Проявляют активность и креативность мышления при подготовке иллюстраций изучаемых понятий. Осуществялют выбор действий в однозначных и неоднозначных ситуациях, комментируют и отстаивают свой выбор. Создают образ целостного мировоззрения при решении математических задач. Адекватно оценивают результаты работы с помощью критериев оценки. | Практикум | ||||||
122 -124 | Решение уравнений, систем уравнений | 3 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Практикум | ||||||||
125 -127 | Решение неравенств, систем неравенств | 3 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Практикум | ||||||||
128 -130 | Рациональные выражения | 3 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Практикум | ||||||||
131 | Итоговая контрольная работа № 8 | 1 |
|
| Демонстрируют математические знания и умения при решении примеров и задач | Контр.раб | ||||||||
132-136 | Решение задач ОГЭ | 5 |
|
|
| самооценка |
32