СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по алгебре для детей с ЗПР (9 класс)

Категория: Алгебра

Нажмите, чтобы узнать подробности

 Рабочая программа базового уровня по алгебре для 9 класса для детей с ЗПР

Просмотр содержимого документа
«Рабочая программа по алгебре для детей с ЗПР (9 класс)»

Пояснительная записка


Рабочая программа базового уровня по алгебре для 9 класса для детей с ЗПР составлена на основе следующих нормативных документов и методических материалов:

  • Федерального закона РФ «Об образовании в Российской Федерации» № 273 – ФЗ. от 29.12.2012 г.

  • Приказа Министерства образования и науки Российской Федерации от 19.12.2014 № 1599 «Об утверждении федерального государственного образовательного стандарта обучающихся с умственной отсталостью (интеллектуальными нарушениями)»;

  • Приказа МО РФ от 10.04.2002г. №29/2065-п «Об утверждении учебных планов специальных (коррекционных) образовательных учреждений для обучающихся и воспитанников с отклонениями в развитии»;

  • Примерной адаптированной основной общеобразовательной программы обучающихся с умственной отсталостью (интеллектуальными нарушениями) (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 22 декабря 2015 г. №4/15);

  • Постановления Главного государственного санитарного врача Российской Федерации от 10 июля 2015 г. №26 «Об утверждении САНПИН 2.4.2.3286-15 "Санитарно – эпидемиологические требования к условиям и организации обучения и воспитания в организациях, осуществляющих образовательную деятельность по адаптированным общеобразовательным программам для обучающихся с ограниченными возможностями здоровья».

Данная программа, сохраняет основное содержание образования, принятое для массовой школы и отличается тем, что предусматривает коррекционную работу с учащимися имеющие ограниченные возможности здоровья.

Рабочая программа ориентирована на использование учебника «Алгебра 9 класс»: учебник для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2020г.

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познание, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения математике:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиции, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношение к математике как к части общечеловеческой культуры, понимание значимости математики для научно- технического прогресса.

Характерными особенностями учащихся с ЗПР являются недостаточность внимания, гиперактивность, снижение памяти, замедленный темп мыслительной деятельности, трудности регуляции поведения. Однако стимуляция деятельности этих учащихся, оказание им своевременной помощи позволяет выделить у них зону ближайшего развития. Поэтому учащиеся с ЗПР, при создании им определенных образовательных

условий, способны овладеть программой основной общеобразовательной школы и в большинстве случаев продолжить образование.

Содержание программы направлено на решение следующих коррекционных задач:

  • продолжить формировать познавательные интересы учащихся и их самообразовательные навыки;

  • создать условия для развития учащегося в своем персональном темпе, исходя из его образовательных способностей и интересов;

  • приобрести (достигнуть) учащимся уровня образованности, соответствующего его личному потенциалу и обеспечивающего возможность продолжения образования и дальнейшего развития;

Важнейшим условием построения учебного процесса для учащихся с ЗПР, является доступность, что достигается выделением в каждой теме главного, дифференциацией материала, многократного повторения пройденного материала, выполнение заданий по алгоритму, ликвидация пробелов.

К основным методам, применяемым на уроках относятся: беседа, объяснение, рассказ, упражнения (тренировочные, по шаблону, самостоятельные), метод наблюдения, дидактические игры.


Общая характеристика учебного предмета, коррекционного курса

Содержание курса алгебры в 9 классе представлено в виде следующих содержательных разделов: «Алгебра», «Функции», «Элементы прикладной математики», «Алгебра в историческом развитии».

Содержание раздела «Алгебра» формирует знания о математическом языке, необходимые для решения математических задач, задач из смежных дисциплин, а также практических задач. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений, систем уравнений и неравенств. Материал данного раздела представлен в аспекте, способствующем формированию у учащихся умения пользоваться алгоритмами. Существенная роль при этом отводится развитию алгоритмического мышления — важной составляющей интеллектуального развития человека.

Цель содержания раздела «Функции» — получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования процессов и явлений окружающего мира. Соответствующий материал способствует развитию воображения и творческих способностей учащихся, умению использовать различные языки математики (словесный, символический, графический).

Содержание раздела «Элементы прикладной математики» раскрывает прикладное и практическое значения математики в современном мире. Материал данного раздела способствует формированию умения представлять и анализировать различную информацию, пониманию вероятностного характера реальных зависимостей.

Алгебра призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.


Описание места учебного предмета в учебном плане


Базисный учебный (образовательный) план на изучение алгебры в 9 классе основной школы отводит 3 учебных часа в неделю в течение года обучения 34 недели, всего 102 часа.

Описание ценностных ориентиров содержания учебного предмета


Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием рациональных способов деятельности, с интеллектуальным развитием человека, духовная — формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность: человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин.

В жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Математике принадлежит ведущая роль в формировании алгоритмического мышления, умения действовать по заданному алгоритму, в конструировании новых алгоритмов. Основной учебной деятельностью на уроках математики является решение целого ряда разнообразных задач, они развивают творческие и прикладные стороны мышления.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.


Планируемые результаты освоения учебного предмета, коррекционного

курса, внутрипредметного модуля


Предметные результаты:

Выпускник научится

  • решать линейные уравнения и неравенства, квадратные уравнения;

  • свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение;

  • решать разные виды уравнений и неравенств и их систем, дробно-рациональные и иррациональные;

  • владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

  • использовать метод интервалов для решения неравенств, в том числе дробно- рациональных и включающих в себя иррациональные выражения;

  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

  • владеть разными методами доказательства неравенств;

  • решать уравнения в целых числах;

  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами;

  • свободно использовать тождественные преобразования при решении уравнений и систему равнений

  • распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной;

  • соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной с формулами, которыми они заданы;

  • находить по графику приближѐнно значения функции в заданных точках;

  • определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);

  • строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).

  • оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;

  • вычислять вероятности событий на основе подсчета числа исходов.

  • В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения и системы уравнений при решении несложных практических задач

  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;

  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;

  • определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства ит.п.);

  • интерпретировать свойства в контексте конкретной практической ситуации

  • оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;

  • читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков.

Выпускник получит возможность научиться

  • решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;

  • использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;

  • использовать метод интервалов для решения неравенств;

  • использовать графический метод для приближенного решения уравнений и неравенств;

  • изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;

  • выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.

  • оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и выборкой из нее;

  • оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов;

  • владеть основными понятиями комбинаторики и уметь их применять при решении задач;

  • иметь представление об основах теории вероятностей;

  • иметь представление о дискретных и непрерывных случайных величинах, и распределениях, о независимости случайных величин;

  • иметь представление о математическом ожидании и дисперсии случайных величин;

  • иметь представление о совместных распределениях случайных величин;

  • понимать суть закона больших чисел и выборочного метода измерения вероятностей;

  • иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;

  • иметь представление о корреляции случайных величин.

В повседневной жизни и при изучении других учебных предметов:

  • составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;

  • использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.

  • вычислять или оценивать вероятности событий в реальной жизни;

  • выбирать методы подходящего представления и обработки данных

  • определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);

  • интерпретировать свойства в контексте конкретной практической ситуации;

  • определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)


Метапредметные:

регулятивные

  • самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;

  • оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики иморали;

  • ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

  • оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;

  • выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;

  • организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;

  • сопоставлять полученный результат деятельности с поставленной заранее целью.

коммуникативные

  • осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;

  • при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);

  • координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

  • развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;

  • распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочныхсуждений.

познавательные

  • искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные)задачи;

  • критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;

  • использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;

  • находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;

  • выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;

  • выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;

  • менять и удерживать разные позиции в познавательной деятельности.

Личностные:

  • воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учѐных в развитие мировой науки;

  • ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учѐтом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

  • умение контролировать процесс и результат учебной и математической деятельности;

  • критичность мышления, инициатива, находчивость, активность при решении математических задач.


Планируемые результаты освоения внутри предметного модуля:


По итогам окончания учебного года обучающийся:

  • научится применять теорему Безу к решению уравнений;

  • будет иметь понятие об элементах теории вероятности, теории множеств, логики;

  • расширит свой кругозор, осознать взаимосвязь математики с другими областями жизни;

  • познакомится с новыми разделами математики, их элементами, некоторыми правилами, а при желании самостоятельно расширить свои знания в этих областях.

  • будет понимать, как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • будет понимать, как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • будет понимать, как потребности практики привели математическую науку к необходимости применения моделирования.

Планируемые результаты коррекционного курса

  • проявление умений анализировать объект, условия работы;

  • проявление способности предварительно планировать ход работы (устанавливать логическую последовательность действий, определять приемы работы, необходимые для ее выполнения);

  • осуществление контроля за своей работой (определять правильность действий и результатов, оценивать качество готовой работы).




СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА, КУРСА


  1. Неравенства.

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Линейные неравенства с одной переменной и их сис­темы.

Основная цель — ознакомить учащихся с применение: неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы. Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств, находить применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности. Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменно: дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решат простейшие неравенства вида ахb, ахостановившись специально на случае, когда а 0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

  1. Квадратичная функция.

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = aх2 + bх + с, ее свойства и график. Степенная функция.

Основная цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции. I

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область опре­деления функции, график. Даются понятия о возрастании и убы­вании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + b, у = а (х - m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2с помощью двух па­раллельных переносов. Приемы построения графика функции y = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащих­ся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функ­ции, а также промежутки, в которых функция сохраняет знак.

Учащиеся знакомятся со свойствами степенной функции у = хппри четном и нечетном натуральном показателе п. Вводит­ся понятие корня n-й степени. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.


  1. Неравенства с одной переменной

Целые уравнения. Дробные рациональные уравнения. Нера­венства второй степени с одной переменной. Метод интервалов.

Основная цель — систематизировать и обобщить сведе­ния о решении целых и дробных рациональных уравнений с од­ной переменной, сформировать умение решать неравенства вида ах2 + bх + с 0 или ах2 + bх + с 0, где а ≠ 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобще­ние и углубление сведений об уравнениях. Вводятся понятия це­лого рационального уравнения и его степени. Учащиеся знако­мятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспо­могательной переменной. Метод решения уравнений путем введе­ния вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмиче­ских и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + bх + + с 0 или ах2 + bх + сО, где а ≠ 0 , осуществляется с опорой на сведения о графике квадратичной функции.

Учащиеся знакомятся с методом интервалов, с помощью ко­торого решаются несложные рациональные неравенства.


  1. Неравенства с двумя переменными

Уравнение с двумя переменными и его график. Системы урав­нений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя перемен­ными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с дву­мя переменными. Основное внимание уделяется системам, в ко­торых одно из уравнений первой степени, а другое второй.

Из­вестный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помо­щью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными: второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.


  1. Элементы прикладной математики.

Математическое моделирование. Процентные расчеты. Приближенные вычисления. Основные правила комбинаторики. Относительная частота и вероятность случайного события. Классическое определение вероятности. Начальные сведения о статистике.

Основная цель — ознакомить учащихся с понятиями пе­рестановки, размещения, сочетания и соответствующими форму­лами для подсчета их числа; ввести понятия относительной час­тоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требу­ется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, ко­торое используется в дальнейшем при выводе формул для подсче­та числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внима­ние учащихся на различие понятий «размещение» и «сочета­ние», сформировать у них умение определять, о каком виде ком­бинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводится понятие «случайное собы­тие», «относительная частота», «вероятность случайного собы­тия». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероят­ности можно применять только к таким моделям реальных собы­тий, в которых все исходы являются равновозможными.


  1. Числовые последовательности.

Числовые последовательности. Арифметическая и геометрическая прогрессии. Формулы п-гочлена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых га членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.



7. Алгебра в историческом развитии

Зарождение алгебры, книга о восстановлении и противопоставлении Мухаммеда аль-Хорезми. История формирования математического языка. История развития понятия функции.

Л.Ф. Магницкий. П.Л. Чебышев. Н.И. Лобачевский. В.Я. Буняковский. А.Н. Колмогоров. Ф. Виет. П. Ферма. Р. Декарт. Н. Тарталья. Д. Кардано. Н. Абель. Б. Паскаль. Л. Пизанский. К. Гаусс.


  1. Повторение (итоговое)

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 9 классе.



Учебно-тематическое планирование





Наименование разделов и тем




Всего часов

1

Повторение курса алгебры 8 класса

4

2

Неравенства

20

3

Квадратичная функция

36

4

Элементы прикладной математики

22

5

Числовые последовательности

18

6

Повторение

2


Итого

102























Содержание коррекционной работы


При обучении детей с ЗПР в диалоговой и монологической речи используются доступные для понимания речевые модели, обиходные ситуации.

При выполнении практической работы:

    • сокращается количество заданий;

    • в отдельных случаях предоставляется возможность самостоятельного выбора способа представления данных в соответствии с поставленной задачей - таблицы, схемы, с использованием соответствующих программных средств обработки данных.

Основной упор делается на практическое применение полученных знаний, необходимых для профессиональной деятельности в современном обществе; на развитие алгоритмического мышления.



Основные виды учебной деятельности обучающихся:


  • По форме организации: участвуют во фронтальной работе, работают в группах, в парах, работают индивидуально.

  • По форме выполнения задания: слушают, пишут, решают устно и письменно, читают, объясняют, наблюдают, строят модель (рисунки, схемы, чертеж, выкладку, математические записи), отвечают, считают, проверяют, проговаривают вслух («про себя).

  • По видам мыслительной деятельности: сравнивают, устанавливая различное или общее; обобщают, классифицируют, систематизируют, выявляют существенное; выделяют главное в учебной информации, самостоятельно формулируют правило.

  • По видам учебной деятельности: воспринимают или выделяют учебную цель, задачу; разъясняют, с какой целью на уроке выполнялась определенная практическая деятельность; определяют способ выполнения учебного задания; планируют этапы и последовательность выполнения учебного задания; осуществляют самоконтроль своих действий и полученных результатов, соотносят их с образцом (алгоритмом) и устанавливают их соответствие или несоответствие; исправляют ошибки.



Система оценки планируемых результатов


Для оценки планируемых результатов данной программой предусмотрено использование:

  • вопросов и заданий для самостоятельной подготовки;

  • тестовых задания для самоконтроля;


Виды контроля и результатов обучения

  1. Текущий контроль

  2. Тематический контроль

  3. Итоговый контроль



Методы и формы организации контроля

  1. Устный опрос.

  2. Письменный опрос:

    1. Математический диктант;

    2. Самостоятельная работа;

    3. Контрольная работа.

Особенности контроля и оценки по математике.

Текущий контроль осуществляется как в письменной, так и в устной форме при выполнении заданий в тетради.

Письменные работы можно проводить в виде тестовых или самостоятельных работ на бумаге. Время работы в зависимости от сложности работы 15-20 минут урока. При этом возможно введение оценки «за общее впечатление от письменной работы» (аккуратность, эстетика, чистота, и т.д.). Эта отметка дополнительная и в журнал выносится по желанию ребенка.

Итоговый контроль проводится в форме контрольных работ практического типа. В этих работах с начала отдельно оценивается выполнение каждого задания, а затем вводится итоговая отметка. При этом итоговая отметка является не средним баллом, а определяется с учетом тех видов заданий, которые для данной работы являются основными.



ТРЕБОВАНИЯ К ПОДГОТОВКЕ ОБУЧАЮЩИХСЯ ПО ПРЕДМЕТУ, КУРСУ

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ С ЗПР

В результате изучения математики  ученик должен

знать/понимать

  • существо понятия математического доказательства; приводить примеры доказательств;

  • существо понятия алгоритма; приводить примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь – в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы,

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.

Элементы логики, комбинаторики, статистики и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

  • вычислять средние значения результатов;

  • находить частоту события, используя измерений собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве и в диалоге;

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.

 Система оценивания

Оценка устных ответов.

   Оценка «5» за устный ответ ставится в том случае, если обучающийся обнаруживает правильное понимание сущности рассматриваемых явлений, закономерностей, законов, теорий; дает четкие определения, истолкования основных понятий, законов, теорий; правильно выполняет чертежи, схемы, графики и. т.п. соответствующие ответу. Строительный ответ по собственному плану, умеет применять знания в новой ситуации, при выполнении практических заданий, может устанавливать связь между изучаемым и ранее изученным материалом, а также устанавливать меж предметные связи.

   Оценка «4» ставится в том случае, если ответ удовлетворяет основным требованиям на оценку «5», но в нем не используется собственный план рассказа, свои примеры, не применяются знания в новой ситуации, нет связи с ранее изученным материалом. Обучающийся показал достаточно полные знания признаков, свойств объектов, законов, определений, терминов, правил и принципов.

   Оценка «3» ставится в том случае, если большая часть ответа удовлетворяет требованиям к ответу на оценку «4», но обнаруживаются отчетливые пробелы, не препятствующие дальнейшему усвоению программного материала; обучающиеся умеют применять полученные знания при решении простых задач, с использованием готовых формул, опорных схем и т.п., но затрудняются при решении задач, требующих преобразования информации.

   Оценка «2» ставится в том случае, если обучающийся  не овладел основными знаниями и умениями в соответствии с требованиями программы.

Оценка «1» ставится в том случае, если обучающийся не может ответить ни  на один из вопросов.  При оценивании устных ответов обучающихся проводится  поэлементный анализ ответа на основе программных  требований к основным знаниям и умениям уч-ся, а также структурных элементов некоторых видов знаний и умений, усвоение которых целесообразно считать обязательными результатами обучения.

Оценка письменных контрольных работ.

   Оценка «5» ставится за работу, выполненную полностью без ошибок и незачетов.

   Оценка «4» ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой, ошибки и одного недочета, не более трех недочетов.

   Оценка «3» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии  четырех-пяти недочетов.

   Оценка «2» ставится, если число ошибок и недочетов превысило норму для оценки «3» или правильно выполнено менее 2/3 всей работы.

        Оценка «1» ставится, если ученик совсем не выполнил ни одного задания

Общая классификация ошибок.

    При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

    Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  • незнание наименований единиц измерения;

  • неумение выделить в ответе главное;

  • неумение применять знания, алгоритмы для решения задач;

  • неумение делать выводы и обобщения;

  • неумение читать и строить графики;

  • неумение пользоваться первоисточниками, учебником и справочниками;

  • потеря корня или сохранение постороннего корня;

  • отбрасывание без объяснений одного из них;

  • равнозначные им ошибки;

  • вычислительные ошибки, если они не являются опиской;

  •  логические ошибки.

     К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  • неточность графика;

  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  • нерациональные методы работы со справочной и другой литературой;

  • неумение решать задачи, выполнять задания в общем виде.

     Недочетами являются:

  • нерациональные приемы вычислений и преобразований;

  • небрежное выполнение записей, чертежей, схем, графиков.

 Формы, методы и приемы, используемые при изучении:

  • индивидуальная работа в ходе урока и после него;

  • работа по карточкам;

  • дифференцированные домашние задания;

  • работа в группах;

  • дополнительные занятия с более слабыми и сильными учащимися во внеурочное время;

  • использование алгоритмов и образцов решения заданий с более слабыми учащимися;

  • включение в контрольные работы заданий, требующих нетрадиционной формы;

  • организация  математических соревнований для более сильных учащихся;

  • проведение математических олимпиад.

Система оценивания для детей с ЗПР ничем не отличается от системы оценивания приведённой выше, поэтому  похвала и поощрение - это тоже большая движущая сила в обучении детей данной категории. Важно, чтобы ребенок поверил в свои силы, испытал радость от успеха в учении.



ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА


  1. А. Г. Мерзляк. Алгебра: 9 кл.: учебник для общеобразовательных учреждений / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. − М.: Вентана-Граф,2019.

  2. А. Г. Мерзляк. Дидактические материалы по алгебре для 9 класса / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. − М.: Вентана-Граф,2019.

  3. Алгебра : 9 класс : методическое пособие / Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М. :Вентана-Граф, 2017. – 200с.

  4. Гаврилова Т. Д. Занимательная математика. 5-11 класс. – Волгоград: Учитель,2008.


Дидактический материал:

  • Карточки для проведения самостоятельных работ по всем темамкурса.

  • Карточки для проведения контрольных работ.

  • Тесты


Оборудование:

  • Линейка метровая

  • Угольник дерев.(30-60)

  • Угольник дерев.(45,45)


Технические средства обучения:

- Компьютер.

- Мультимедиапроектор.


Для ученика:

    1. Алгебра: 8 класс: учебник для учащихся общеобразова­тельных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2019.