Согласовано Согласовано Утверждаю
Руководитель МО учителей Заместитель директора Директор МБОУ
физико-математического цикла МБОУ «Шумаровская СОШ» «Шумаровская СОШ»
МБОУ «Шумаровская СОШ» ________ /Лосева О.М./ __________ /Маюрова Г.А./
_________________________ «30» августа 2019 г._____ Приказ № 41
Протокол № ____ от от «30» августа 2019 г.
«30» августа 2019 г.____
Рабочая программа
«Геометрия» 9 класс
Якимович Елена Николаевна
учитель 1 квалификационной категории
2019 – 2020 учебный год
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Программа разработана на основе авторской программы по геометрии для 9 класса Л. С. Атанасяна. Программы для общеобразовательных учреждений по геометрии 7-9 кл. автор-составитель Т.А. Бурмистрова – М.: Просвещение, 2012.
Настоящая рабочая программа разработана в соответствии с Примерной программой основного общего образования по математике с учетом требований федерального государственного образовательного стандарта основного общего образования и ориентирована на работу по учебно-методическому комплекту:
Геометрия,7-9 кл. Учебник. для общеобразоват. учреждений [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.] – 20-е изд. – М.: Просвещение, 2017
Зив Б.Г. Геометрия: Дидактические материалы для 9 класса/ Б.Г. Зив, В.М. Мейлер. – М.: Просвещение, 2017
Изучение геометрии в 7-9 классах: методические рекомендации: книга для учителя/ Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]- М.: Просвещение, 2010.
Примерные программы основного общего образования. Математика. – (Стандарты второго поколения). – 3-е изд., перераб. – М.: Просвещение, 2011.
«Геометрия. Сборник рабочих программ 7 - 9 классы». Составитель Т. А. Бурмистрова. – М.: Просвещение, 2012. – 96 с.
Основные цели курса:
-овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;
-приобретение опыта планирования и осуществления алгоритмической деятельности;
-освоение навыков и умений проведения доказательств, обоснования выбора решений;
-приобретение умений ясного и точного изложения мыслей;
-развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;
-научить пользоваться геометрическим языком для описания предметов.
Задачи обучения:
- научить учащихся выполнять действия над векторами как направленными отрезками;
-познакомить с использованием векторов и метода координат при решении геометрических задач;
- развить умение учащихся применять тригонометрический аппарат при решении геометрических задач;
- расширить знания учащихся о многоугольниках;
- рассмотреть понятия длины окружности и площади круга для их вычисления;
- познакомить учащихся с понятием движения и его свойствами;
- дать начальное представление о телах и поверхностях в пространстве.
ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА.
Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.
Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.
Место предмета в базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение геометрии на ступени основного общего образования отводится 210 ч из расчета 2 ч в неделю с 7 по 9 класс.
Рабочая программа для 9 класса рассчитана на 2 часа в неделю, всего 70 часов.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса.
Содержание курса геометрии 9 класса включает следующие тематические блоки:
№ п/п | Наименование разделов и тем | Всего часов | Контрольные работы |
1. | Векторы | 8 | - |
2. | Метод координат | 10 | 1 |
3. | Соотношения между сторонами и углами треугольника. Скалярное произведение векторов | 11 | 1 |
4. | Длина окружности и площадь круга | 12 | 1 |
5. | Движения | 8 | 1 |
6. | Начальные сведения из стереометрии | 8 | - |
7. | Об аксиомах планиметрии | 2 | - |
8. | Повторение. Решение задач | 11 | |
| Итого: | 70 | 4 |
Отбор содержания обучения осуществляется на основе следующих дидактических принципов: соответствие обязательному минимуму содержания образования в основной школе; Усиление общекультурной направленности материала; учёт психолого-педагогических особенностей, актуальных для этого возрастного периода; создание условий для понимания и осознания воспринимаемого материала. В предлагаемом курсе геометрии выделяются следующие основные содержательные линии:
1-2. Векторы. Метод координат
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).
На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.
3. Соотношения между сторонами и углами треугольника
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах. Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.
Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.
Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.
Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.
4. Длина окружности и площадь круга
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2ге-угольника, если дан правильный п-угольник.
Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.
5.Движения
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.
6. Начальные сведения из стереометрии
Предмет стереометрия. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объёмов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объёмов.
Основная цель – дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объёмов тел.
Рассмотрение простейших многогранников (призма, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объёмов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью развёрток этих поверхностей, формула площади сферы приводится без обоснования.
7. Об аксиомах геометрии
Беседа об аксиомах геометрии.
Основная цель – дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.
Различные системы аксиом, различные способы введения понятия равенства фигур.
8. Повторение. Решение задач
Характеристика основных видов деятельности ученика (на уровне учебных действий)
Основное содержание по темам | Характеристика основных видов деятельности ученика (на уровне учебных действий) |
Векторы (8 ч) |
Понятие вектора. Сложение и вычитание векторов. Умножение вектора на число. Применение векторов к решению задач. | Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов; мотивировать введение понятий и действий, связанных с векторами, соответствующими примерами, относящимся к физическим векторным величинам; применять векторы и действия над ними при решении геометрических задач. |
Метод координат (10 ч) |
Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. | Объяснять и иллюстрировать понятия прямоугольной системы координат, координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой. |
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (11ч) |
Синус, косинус, тангенс угла. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. | Формулировать и иллюстрировать определения синуса, косинуса и тангенса углов от 0° до 180°; выводить основное тригонометрическое тождество и формулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников; объяснять, как используются тригонометрические формулы в измерительных работах на местности; формулировать определение угла между векторами и скалярного произведения векторов; выводить формулу скалярного произведения через координаты векторов; формулировать и обосновывать утверждение о свойствах скалярного произведения; использовать скалярное произведение при решении задач. |
Длина окружности и площадь круга (12 ч) |
Правильные многоугольники. Длина окружности и площадь круга. | Формулировать определение правильного многоугольника; формулировать и доказывать теоремы об окружностях, описанной около правильного многоугольника и вписанной в него; выводить и использовать формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности; решать задачи на построение правильных многоугольников; объяснять понятия длины окружности и площади круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кругового сектора; применять эти формулы при решении задач. |
Движения (8 ч) |
Понятие движения. Параллельный перенос и поворот. | Объяснять, что такое отображение плоскости на себя и в каком случае оно называется движением плоскости; объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движениями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных программ. |
Начальные сведения из стереометрии (8 ч) |
Многогранники. Тела и поверхности вращения. | Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, что такое n-угольная призма, её основания, боковые грани и рёбра, какая призма называется прямой и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой параллелепипед называется прямоугольным; формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоугольного параллелепипеда; объяснять, что такое объём многогранника; выводить (с помощью принципа Кавальери) формулу объёма прямоугольного параллелепипеда; объяснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рёбра и высота пирамиды, какая пирамида называется правильной, что такое апофема правильной пирамиды, приводить формулу объёма пирамиды; объяснять, какое тело называется цилиндром, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверхности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диаметр сферы (шара), какими формулами выражаются объём шара и площадь сферы; изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар. |
Об аксиомах планиметрии (2 ч) |
Повторение. Решение задач. (11ч) |
Характеристики универсальных учебных действий, осваиваемых в рамках изучаемого предмета:
личностные:
формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициатива, находчивость, активность при решении геометрических задач;
умение контролировать процесс и результат учебной математической деятельности.
метапредметные:
умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
формирование и развитие учебной и обще пользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ - компетентности);
умение находить в различных источниках информацию, необходимую для решения
математических проблем, и представлять её в понятной форме; принимать решение в
условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура) как важ-
нейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
овладение навыками устных, письменных, инструментальных вычислений;
овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
Планируемые результаты изучения курса геометрии
В результате изучения курса геометрии 9-го класса учащиеся должны уметь:
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;
вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве.
УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
Печатные пособия:
УМК:
Геометрия,7-9 кл. Учебник. для общеобразоват. учреждений [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.] – 20-е изд. – М.: Просвещение, 2017
Зив Б.Г. Геометрия: Дидактические материалы для 9 класса/ Б.Г. Зив, В.М. Мейлер. – М.: Просвещение, 2014
Изучение геометрии в 7-9 классах: методические рекомендации: книга для учителя/ Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]- М.: Просвещение, 2011
Сборник заданий для проведения экзамена в 9 классе. Геометрия / А.Д.Блинков, Т.М.Мищенко. - М.: Просвещение 2018 г - 94 с.- (итоговая аттестация)
Ф.Ф.Лысенко. Подготовка к итоговой аттестации. Издательство «Легион», Ростов -на -Дону, 2018.
Технические средства обучения:
1) Компьютер.
2) Видеопроектор
Информационно-коммуникативные средства:
Тематические презентации
Календарно-тематическое планирование по геометрии 9 класса.
№ п/п | Изучаемый материала | Количество часов | Сроки |
1. 2. 3. 1. 2. 3. 4. 5. 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 1. 2. 3. 4. 1. 2. 3. 4. 5. | Векторы. Понятие вектора. Сложение и вычитание векторов. Умножение вектора на число. Применение векторов к решению задач. Метод координат. Координаты вектора. Простейшие задачи в координатах. Уравнение окружности и прямой. Решение задач. Контрольная работа № 1. Соотношение между сторонами и углами треугольника. Скалярное произведение векторов. Синус, косинус, тангенс угла. Соотношение между сторонами и углами треугольника. Решение задач Скалярное произведение векторов. Решение задач. Промежуточный контроль. Контрольная работа № 2. Длина окружности и площадь круга. Правильные многоугольники. Решение задач. Длина окружности. Площадь круга. Решение задач. Контрольная работа № 3. Движения. Понятия движения. Параллельный перенос и поворот. Решение задач. Контрольная работа № 4. Начальные сведения о стереометрии. Многогранники. Решение задач. Тела и поверхности вращения. Решение задач. Об аксиомах планиметрии. Повторение. Решение задач. Векторы. Метод координат. Соотношение между сторонами и углами треугольника. Длина окружности. Площадь круга. Движения. | 8 2 3 3 10 2 2 3 2 1 11 3 2 2 2 1 1 12 2 2 2 2 3 1 8 3 3 1 1 8 2 2 2 2 2 11 1 2 3 3 2 | |
11