СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по математике 11 класс (углубленный уровень)

Категория: Математика

Нажмите, чтобы узнать подробности

Данная рабочая программа ориентирована на учебники 11 класса Никольского С.М. (алгебра и начала математического анализа) и Атанасяна Л.С. (геометрия), углубленный уровень изучения, 6 часов в неделю (4ч алгебра и 2 ч геометрия).

Просмотр содержимого документа
«Рабочая программа по математике 11 класс (углубленный уровень)»

Муниципальное бюджетное общеобразовательное учреждение

Борисоглебского городского округа

Борисоглебская средняя общеобразовательная школа № 3



РАССМОТРЕНО


на заседании ШМО учителей

математики и информатики


Протокол № ­­­­__

от «___» августа 2022г.


Руководитель ШМО учителей математики и информатики

___________Москатова Ю.А.



СОГЛАСОВАНО


Зам. директора по УВР

_______ Е.А. Ясакова



УТВЕРЖДАЮ


Директор МБОУ БГО СОШ № 3 ______________С.Н. Ледовских


Приказ № ___

от «___» августа 2022 г.







РАБОЧАЯ ПРОГРАММА

ПО ПРЕДМЕТУ

МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ

для 11 класса

уровень: углубленный



Автор: Попова Татьяна Сергеевна,

учитель математики ВКК






2022 - 2023 учебный год

Рабочая программа по учебному предмету «Математика: алгебра и начала математического анализа, геометрия» (углубленный уровень) для 11 класса разработана на основе и в соответствии со следующими нормативными документами:

- Федерального закона «Об Образовании в Российской Федерации» от 29.12.2012 г. № 273-ФЗ (в действующей редакции),

-Приказа Министерства и образования и науки РФ «Об утверждении федерального государственного образовательного стандарта среднего общего образования» от 17.05.2012 № 413,

-Приказа Министерства образования и науки РФ от 31.12.2015 № 1578 «О внесении изменений в федеральный государственный образовательный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки РФ от 17 мая 2012 года № 413»,

-Приказа Министерства образования и науки РФ от 29.06.2017 № 613 «О внесении изменений в федеральный государственный образовательный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки РФ от 17 мая 2012 года № 413»,

- Приказа Министерства образования и науки РФ от 24.09.2020 года № 519 «О внесении изменения в федеральный государственный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки РФ от 17 мая 2012 года»,

- Приказа Министерства Просвещения РФ от 20.05. 2020 г. № 254 «Об утверждениифедерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность»,

- Авторской программы общеобразовательных учреждений«Алгебра и начала математического анализа 10-11 класс. Составитель: Т.А.Бурмистрова. Авторы: С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин,

- Авторской программы по геометрии Л.С.Атанасяна, В.Ф.Бутузова,С.Б.Кадомцева и др. (Геометрия.Сборник рабочих программ. 10-11 классы),

- Основной образовательной программы среднего общего образования МБОУ БГО СОШ № 3,

- Учебного плана МБОУ БГО СОШ № 3.



На изучение предмета «Математика: алгебра и начала математического анализа, геометрия» углубленного уровня отводится 204 часа из расчета 6 ч в неделю (34 учебные недели). Алгебра изучается 4 ч в неделю, всего 136 часов, геометрия 2 часа в неделю, всего 68 часов.












РАЗДЕЛ 1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ»


ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ


  • ориентация обучающихся на реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;

  • готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества;

  • нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;

  • принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;

  • развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;

  • мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;

  • готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

  • осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;

  • готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;

  • потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;

  • готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

  • физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.


МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

РЕГУЛЯТИВНЫЕ:

– самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;

– оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;

– ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

– оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;

– выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;

– организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;

– сопоставлять полученный результат деятельности с поставленной заранее целью.



ПОЗНАВАТЕЛЬНЫЕ:

– искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;

– критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;

– использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;

– находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;

– выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;

– выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;

– менять и удерживать разные позиции в познавательной деятельности.



КОММУНИКАТИВНЫЕ:

– осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;

– при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);

– координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

– развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;

– распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.


ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ


- сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;

- сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;

- сформированность представлений о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений; владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;

- сформированность умений моделировать реальные ситуации, исследовать построенные модели, интерпретировать полученный результат;

- владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем;

- сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;

- владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах;

- сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;

- сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин.


Выпускник научится:

- свободно оперировать понятиями (знать определения, понятия, уметь доказывать свойства (признаки, если они есть), характеризовать связи с другими понятиями, представляя одно понятие, как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач): конечное множество, элемент множества, подмножество, пересечение, объединение и разность множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств, на координатной плоскости;

- проверять принадлежность элемента множеству;

- находить пересечение и объединение множеств, в том числе, представленных графически на числовой прямой и на координатной плоскости;

- проводить доказательные рассуждения для обоснования истинности утверждений;

- в повседневной жизни и при изучении других предметов использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

- в повседневной жизни и при изучении других предметов проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов;

- свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, действительное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

-использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач;

- выполнять округление рациональных и иррациональных чисел

- сравнивать действительные числа разными способами;

- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

- находить НОД и НОК и использовать их при решении задач;

- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;

- выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений;

- в повседневной жизни и при изучении других предметов выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

- в повседневной жизни и при изучении других предметов записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

- в повседневной жизни и при изучении других предметов составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов;

- свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнения, равносильные на множестве, равносильные преобразования уравнений;

- решать разные виды уравнений и неравенств и их систем, в том числе некоторые виды уравнений 3и 4 степеней, дробно-рациональные и иррациональные уравнения;

- овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;

- применять теорему Безу к решению уравнений;

- применять теорему Виета для решения некоторых уравнений;

- понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений;

- владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

- использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

- решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

- изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами;

- свободно использовать тождественные преобразования при решении уравнений и систем уравнений;

- в повседневной жизни и при изучении других предметов составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

- в повседневной жизни и при изучении других предметов выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;

- в повседневной жизни и при изучении других предметов составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;

- владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; и уметь применять эти понятия при решении задач;

- владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач;

- владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;

- владеть понятиям логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач;

- владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;

- владеть понятием обратная функция; применять это понятие при решении задач; применять при решении задач свойства функций: четность, периодичность, ограниченность;

- применять при решении задач преобразования графиков функций;

- владеть понятием числовые последовательности арифметическая и геометрическая прогрессия;

- применять при решении задач свойства и признаки арифметической и геометрической прогрессий;

- в повседневной жизни и при изучении других учебных предметов определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей наибольшие и наименьшие значения, промежутки возрастания и убывания, области промежутки знакопостоянства, асимптоты, точки перегиба, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;

- в повседневной жизни и при изучении других учебных предметов определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи, физике и т.п. (амплитуда, период и т. п.);

- владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;

- владеть понятиями: производная функции в точке, производная функции;

- вычислять производные элементарных функций и их комбинаций;

- исследовать функции на монотонность и экстремумы;

- строить графики и применять к решению задач, в том числе с параметром;

- владеть понятием касательная к графику функции и уметь применять его при решении задач; владеть понятиями первообразная, определенный интеграл;

- применять теорему Ньютона-Лейбница и ее следствия для решения задач;

- в повседневной жизни и при изучении других учебных предметов решать прикладные задачи из физики, химии, и других предметов, связанные с исследованием характеристик реальных процессов,

- оперировать понятиями: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, погрешности при измерениях, вероятность события, сумма и произведение вероятностей;

- вычислять вероятности событий на основе подсчета числа исходов или применяя формулы комбинаторики;

- владеть понятиями размещение, перестановка, сочетание и уметь их применять при решении задач;

- иметь представление об основах теории вероятностей;

- в повседневной жизни и при изучении других предметов вычислять или оценивать вероятности событий в реальной жизни;

- анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;

- строить модель решения задачи, проводить доказательные рассуждения при решении задачи;

- переводить при решении задачи информации из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы;

- в повседневной жизни и при изучении других предметов решать практические задачи и задачи из других предметов;

- в модельных и реальных ситуациях выделять сущностные характеристики и основные виды деятельности людей, объяснять роль мотивов в деятельности человека;

- характеризовать и иллюстрировать конкретными примерами группы потребностей человека;

- приводить примеры основных видов деятельности человека;

- выполнять несложные практические задания по анализу ситуаций, связанных с различными способами разрешения межличностных конфликтов; выражать собственное отношение к различным способам разрешения межличностных конфликтов.


Выпускник получит возможность научиться:

- оперировать понятием определения, основными видами определений; основными видами теорем;

- применять метод математической индукции для проведения рассуждений и доказательств и при решении задач;

- в повседневной жизни и при изучении других предметов использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов;

- свободно оперировать числовыми множествами при решении задач;

- иметь базовые представления о множестве комплексных чисел;

- свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;

- владеть формулой бинома Ньютона;

- свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;

- свободно решать системы линейных уравнений;

- решать основные типы уравнений и неравенств с параметрами;

- владеть понятием асимптоты и уметь их применять при решении задач;

- применять методы решения простейших функциональных уравнений и неравенств;

- свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;

- свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;

- оперировать понятием первообразной для решения задач;

- овладеть основными сведениями об интеграле Ньютона-Лейбница и его простейших применениях;

- оперировать в стандартных ситуациях производными высших порядков;

- уметь применять при решении задач свойства непрерывных функций;

- уметь применять при решении задач теоремы Вейерштрасса;

- владеть понятиями вторая производная, выпуклость графика функции и уметь исследовать функцию на выпуклость;

- иметь представление об аксиоматическом методе;

- представлять вклад выдающихся математиков в развитие математики и иных научных областей;

- понимать роль математики в развитии России;

- применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики);

- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты сих описаниями, изображениями;

- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

- анализировать в простейших случаях взаимное расположение объектов в пространстве;

- изображать основные многогранники; выполнять чертежи по условиям задач;

- строить простейшие сечения куба, призмы, пирамиды;

- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);

- использовать при решении стереометрических задач планиметрические факты и методы;

- проводить доказательные рассуждения в ходе решения задач;

- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

- вычисления площадей поверхностей пространственных тел при решении практических задач,

- используя при необходимости справочники и вычислительные устройства.


Числовые функции

Выпускник научится:

- владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастания на числовом промежутке, убывания на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; и уметь применять эти понятия при решении задач;

- определять значение функции по значению аргумента при различных способах задания функции;

- строить графики изученных функций, выполнять преобразования графиков; описывать по графику и по формуле поведение и свойства функций; находить по графику функции наибольшее и наименьшее значения;

Выпускник получит возможность научиться:

- описывать с помощью функций различные реальные зависимости между величинами и интерпретировать их графики;

- извлекать информацию, представленную в таблицах, на диаграммах, графиках.


Комплексные числа

Выпускник научится:

- выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами.

Выпускник получит возможность научиться:

- решать уравнения и неравенства с комплексными корнями.


Производная

Выпускник научится:

- находить сумму бесконечно убывающей геометрической прогрессии; владеть понятиями: производная функции в точке, производная функции;

- вычислять производные элементарных функций, применяя правила вычисления производных, используя справочные материалы;

- исследовать функции и строить их графики с помощью производной;

- решать задачи с применением уравнения касательной к графику функции;

- решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке.

Выпускник получит возможность научиться:

- применять решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.



Первообразная и интеграл

Выпускник научится:

- вычислять площади фигур на координатной плоскости с применением определённого интеграла.

Выпускник получит возможность научиться:

- овладеть основными сведениями об интеграле Ньютона-Лейбница и его применениях.


Уравнения и неравенства. Системы уравнений и неравенств

Выпускник научится:

- свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

- решать рациональные, иррациональные, показательные, тригонометрические и логарифмические уравнения, их системы, в том числе некоторые виды уравнений 3 и 4 степеней;

- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков; использовать для приближенного решения уравнений и неравенств графический метод.

Выпускник получит возможность научиться:

- свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;

- решать основные типы уравнений и неравенств с параметрами.


Метод координат в пространстве. Движения

Выпускник научится:

-свободно оперировать понятиями: прямоугольная система координат в пространстве, координаты вектора, угол между векторами, движения и виды движения.

Выпускник получит возможность научиться:

- находить связь между координатами векторов и координатами точек, решать простейшие задачи в координатах, вычислять углы между прямыми и плоскостями, записывать уравнение плоскости, применять движения при решении задач.


Цилиндр, конус, шар

Выпускник научится:

-владеть понятиями: цилиндр, конус, шар и их элементами; площадь поверхности.

Выпускник получит возможность научиться:

-строить сечения, находить элементы цилиндра, конуса и шара, и площади их поверхностей.


Объёмы тел

Выпускник научится:

-владеть понятием объёма тел.

Выпускник получит возможность научиться:

-находить объёмы тел.







РАЗДЕЛ 2. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ»


Модуль «Алгебра»

Углубленный уровень (136 часов, 4 часа в неделю)


Повторение (2 часа)

Функции и их графики (9 часов)

Элементарные функции. Область определения и область изменения функции. Ограниченность функции. Четность, нечетность, периодичность функций. Промежутки возрастания, убывания, знакопостоянство и нули функции. Исследование функций и построение их графиков элементарными методами. Основные способы преобразования графиков. Графики функций, содержащие модули. Графики сложных функций.

Предел функции и непрерывность (5 часов)

Понятие предела функции. Односторонние пределы. Свойства пределов функций. Понятие непрерывности функций. Непрерывность элементарных функций. Разрывные функции.

Обратные функции (6 часов)

Понятие обратной функции. Взаимно обратные функции. Обратные тригонометрические функции. Примеры использования обратных тригонометрических функций.

Производная (11 часов)

Понятие производной. Производная суммы. Производная разности. Непрерывность функций, имеющих производную. Дифференциал. Производная произведения. Производная частного. Производные элементарных функций. Производная сложной функции. Производная обратной функции.

Применение производной (16 часов)

Максимум и минимум функции. Уравнение касательной. Приближенные вычисления. Теоремы о среднем. Возрастание и убывание функций. Производные высших порядков. Выпуклость и вогнутость графиков функций. Экстремум функции с единственной критической точкой. Задачи на максимум и минимум. Асимптоты. Дробно-линейная функция. Построение графиков функций с применением производной.

Первообразная и интеграл (12 часов)

Понятие первообразной. Площадь криволинейной трапеции. Определенный интеграл. Приближенное вычисление определенного интеграла. Формула Ньютона-Лейбница. Свойства определенных интегралов. Применение определенных интегралов в геометрических и физических задачах.

Равносильность уравнений и неравенств (4 часа)

Равносильные преобразования уравнений. Равносильные преобразования неравенств.

Уравнения-следствия (8 часов)

Понятие уравнения-следствия. Возведение уравнения в четную степень. Потенцирование логарифмических уравнений. Другие преобразования, приводящие к уравнению-следствию. Применение нескольких преобразований, приводящих к уравнению-следствию.

Равносильность уравнений и неравенств системам (11 часов)

Основные понятия. Решение уравнений с помощью систем. Уравнения вида f(a(x))=f(b(x)). Решение неравенств с помощью систем. Неравенства вида f(a(x)) f(b(x)).

Равносильность уравнений на множествах (7 часов)

Основные понятия. Возведение уравнения в четную степень. Умножение уравнения на функцию. Другие преобразования уравнений. Применение нескольких преобразований. Уравнения с дополнительными условиями.




Равносильность неравенств на множествах (7 часов)

Основные понятия. Возведение неравенства в четную степень. Умножение неравенства на функцию. Другие преобразования неравенств. Применение нескольких преобразований. Неравенства с дополнительными условиями. Нестрогие неравенства.

Метод промежутков для уравнений и неравенств (4 часа)

Уравнения с модулями. Неравенства с модулями. Метод интервалов для непрерывных функций.

Использование свойств функций при решении уравнений и неравенств (5 часов)

Использование областей существования функции. Использование неотрицательности функции. Использование ограниченности функции. Использование монотонности и экстремумов функции. Использование свойств синуса и косинуса.

Системы уравнений с несколькими неизвестными (8 часов)

Равносильность систем. Система-следствие. Метод замены неизвестных. Рассуждения с числовым значением при решении уравнений и неравенств.

Повторение курса алгебры и начала анализа 10-11 классов (14 часов)

Резерв - 7 часа


Модуль «Геометрия»

(68 часов, 2 часа в неделю)


Повторение (2 часа)

Цилиндр, конус, шар (14 часов)

Цилиндр. Площадь поверхности цилиндра. Конус. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы. Сфера, вписанная в цилиндрическую поверхность.

Объемы тел (18 часов)

Объем прямоугольного параллелепипеда. Объем прямой призмы и цилиндра. Вычисление объемов тел с помощью определенных интегралов. Объем наклонной призмы, пирамиды, конуса. Объем шара и площадь сферы.

Векторы в пространстве (6 часов)

Понятие вектора в пространстве. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

Метод координат в пространстве (12 часов)

Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Движения. Центральная симметрия. Осевая симметрия. Параллельный перенос. Преобразование подобия.

Повторение за курс геометрии 10-11 классов (14 часов)

Резерв – 2 часа













РАЗДЕЛ 3. ТЕМАТИЧЕКОЕ ПЛАНИРОВАНИЕ ПО УЧЕБНОМУ ПРЕДМЕТУ «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА»



п/п

Название темы

Количество часов

Контрольные работы

1

Повторение

2


2

Функции и их графики

9


3

Предел функции и непрерывность

5


4

Обратные функции

6

1

5

Производные

11

1

6

Применение производной

16

1

7

Первообразная и интеграл

12

1

8

Равносильность уравнений и неравенств

4


9

Уравнения-следствия

8


10

Равносильность уравнений и неравенств системам

11


11

Равносильность уравнений на множествах

7

1

12

Равносильность неравенств на множествах

7


13

Метод промежутков для уравнений и неравенств

4

1

14

Использование свойств функций при решении уравнений и неравенств

5


15

Системы уравнений с несколькими неизвестными

8

1

16

Повторение курса алгебры и начала анализа 10-11 классов

14

1

17

Резерв

7


ИТОГО:

136

8



ТЕМАТИЧЕКОЕ ПЛАНИРОВАНИЕ ПО УЧЕБНОМУ ПРЕДМЕТУ «ГЕОМЕТРИЯ»


п/п

Название темы

Количество часов

Контрольные работы

1

Повторение

2


2

Цилиндр, конус, шар

14

1

3

Объемы тел

18

1

4

Векторы в пространстве

6


5

Метод координат в пространстве

12

1

6

Итоговое повторение курса геометрии

14

1

7

Резерв

2


ИТОГО:

68

4

ПРИЛОЖЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ПО УЧЕБНОМУ ПРЕДМЕТУ «МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ»


11 КЛАСС (УГЛУБЛЕННЫЙ УРОВЕНЬ)


Календарно-тематическое планирование

по алгебре и началам математического анализа

(4 часа в неделю, всего 136 часов)


Учебник:Алгебра и начала математического анализа. 11 класс. С.М.Никольский и др. - М.: Просвещение, 2018 г. Базовый и углубленный уровни. Рекомендовано Министерством образования и науки РФ 5-е издание.

№ урока

Тема урока

Кол-во

часов

Дата проведения



Примечания

По плану

Фактически

Повторение (2 часа)

1

Повторение учебного материала за курс 10 класса. Показательные и логарифмические уравнения и неравенства

1

02.09.22



2

Повторение учебного материала за курс 10 класса. Тригонометрические уравнения и неравенства

1

05.09.22



Функции и их графики (9 часов)

3

Элементарные функции

1

08.09.22



4

Область определения и область изменения функции. Ограниченность функции

1

08.09.22



5

Четность, нечетность функций

1

09.09.22



6

Периодичность функций

1

12.09.22



7

Промежутки возрастания, убывания функции

1

15.09.22



8

Знакопостоянство и нули функции

1

15.09.22



9

Исследование функций и построение их графиков элементарными методами

1

16.09.22



10

Основные способы преобразования графиков

1

19.09.22



11

Графики функций, содержащие модули. Графики сложных функций

1

22.09.22



Предел функции и непрерывность (5 часов)

12

Понятие предела функции

1

22.09.22



13

Односторонние пределы

1

23.09.22



14

Свойства пределов функций

1

26.09.22



15

Понятие непрерывности функций

1

29.09.22



16

Непрерывность элементарных функций. Разрывные функции

1

29.09.22



Обратные функции (6 часов)

17

Понятие обратной функции

1

30.09.22



18

Взаимно обратные функции

1

03.10.22



19

Обратные тригонометрические функции

1

06.10.22



20

Обратные тригонометрические функции

1


06.10.22



21

Примеры использования обратных тригонометрических функций

1

07.10.22



22

Контрольная работа № 1 по теме: «Функции»

1

10.10.22



Производная (11 часов)

23

Анализ контрольной работы. Работа над ошибками

1

13.10.22



24

Понятие производной

1

13.10.22



25

Производная суммы

1

14.10.22



26

Производная разности

1

17.10.22



27

Непрерывность функций, имеющих производную. Дифференциал

1

20.10.22



28

Производная произведения

1

20.10.22



29

Производная частного

1

21.10.22



30

Производные элементарных функций

1

24.10.22



31

Производная сложной функции

1

27.10.22



32

Производная сложной функции

1

27.10.22



33

Контрольная работа № 2 по теме «Производная»

1

28.10.22



Применение производной (16 часов)

34

Анализ контрольной работы. Работа над ошибками

1

07.11.22



35

Максимум и минимум функции

1

10.11.22



36

Уравнение касательной

1

10.11.22



37

Уравнение касательной

1

11.11.22



38

Приближенные вычисления. Теоремы о среднем

1

14.11.22



39

Возрастание и убывание функций

1

17.11.22



40

Возрастание и убывание функций

1

17.11.22



41

Производные высших порядков. Выпуклость и вогнутость графиков функций

1

18.11.22



42

Экстремум функции с единственной критической точкой

1

21.11.22



43

Экстремум функции с единственной критической точкой

1

24.11.22



44

Задачи на максимум и минимум

1

24.11.22



45

Задачи на максимум и минимум

1

25.11.22



46

Асимптоты. Дробно-линейная функция

1

28.11.22



47

Построение графиков функций с применением производной

1

01.12.22



48

Построение графиков функций с применением производной

1

01.12.22



49

Контрольная работа № 3 по теме «Применение производной»

1

02.12.22



Первообразная и интеграл (12 часов)

50

Анализ контрольной работы. Работа над ошибками

1

05.12.22



51

Понятие первообразной

1

08.12.22



52

Площадь криволинейной трапеции

1

08.12.22



53

Определенный интеграл

1

09.12.22



54

Определенный интеграл

1

12.12.22



55

Приближенное вычисление определенного интеграла

1

15.12.22



56

Формула Ньютона-Лейбница

1

15.12.22



57

Формула Ньютона-Лейбница

1

16.12.22



58

Формула Ньютона-Лейбница

1

19.12.22



59

Свойства определенных интегралов

1

22.12.22



60

Применение определенных интегралов в геометрических и физических задачах

1

22.12.22



61

Контрольная работа № 4 по теме «Первообразная и интеграл»

1

23.12.22



Равносильность уравнений и неравенств (4 часа)

62

Анализ контрольной работы. Работа над ошибками

1

09.01.23



63

Равносильные преобразования уравнений

1

12.01.23



64

Равносильные преобразования уравнений

1

12.01.23



65

Равносильные преобразования неравенств

1

13.01.23



Уравнения-следствия (8 часов)

66

Понятие уравнения-следствия

1

16.01.23



67

Возведение уравнения в четную степень

1

19.01.23



68

Возведение уравнения в четную степень

1

19.01.23



69

Потенцирование логарифмических уравнений

1

20.01.23



70

Потенцирование логарифмических уравнений

1

23.01.23



71

Другие преобразования, приводящие к уравнению-следствию

1

26.01.23



72

Применение нескольких преобразований, приводящих к уравнению-следствию

1

26.01.23



73

Применение нескольких преобразований, приводящих к уравнению-следствию

1

27.01.23



Равносильность уравнений и неравенств системам (11 часов)

74

Основные понятия

1

30.01.23



75

Решение уравнений с помощью систем

1

02.02.23



76

Решение уравнений с помощью систем

1

02.02.23



77

Решение уравнений с помощью систем

1

03.02.23



78

Уравнения вида f(a(x))=f(b(x))

1

06.02.23



79

Уравнения вида f(a(x))=f(b(x))

1

09.02.23



80

Решение неравенств с помощью систем

1

09.02.23



81

Решение неравенств с помощью систем

1

10.02.23



82

Решение неравенств с помощью систем

1

13.02.23



83

Неравенства вида f(a(x)) f(b(x))

1

16.02.23



84

Неравенства вида f(a(x)) f(b(x))

1

16.02.23



Равносильность уравнений на множествах (7 часов)

85

Основные понятия

1

17.02.23



86

Возведение уравнения в четную степень

1

20.02.23



87

Возведение уравнения в четную степень

1

27.02.23



88

Умножение уравнения на функцию

1

02.03.23



89

Другие преобразования уравнений

1

02.03.23



90

Применение нескольких преобразований. Уравнения с дополнительными условиями

1

03.03.23



91

Контрольная работа № 5 по теме «Равносильность уравнений и неравенств»

1

06.03.23



Равносильность неравенств на множествах (7 часов)

92

Основные понятия

1

09.03.23



93

Возведение неравенств в четную степень

1

09.03.23



94

Возведение неравенств в четную степень

1

10.03.23



95

Умножение неравенства на функцию

1

13.03.23



96

Другие преобразования неравенств

1

16.03.23



97

Применение нескольких преобразований. Неравенства с дополнительными условиями

1

16.03.23



98

Нестрогие неравенства

1

17.03.23



Метод промежутков для уравнений и неравенств (4 часа)

99

Уравнения с модулями

1

20.03.23



100

Неравенства с модулями

1

23.03.23



101

Метод интервалов для непрерывных функций

1

23.03.23



102

Контрольная работа № 6 по теме «Методы решения уравнений и неравенств»

1

24.03.23



Использование свойств функций при решении уравнений и неравенств (5 часов)

103

Использование областей существования функции

1

03.04.23



104

Использование неотрицательности функции

1

06.04.23



105

Использование ограниченности функции

1

06.04.23



106

Использование монотонности и экстремумов функции

1

07.04.23



107

Использование свойств синуса и косинуса

1

10.04.23



Системы уравнений с несколькими неизвестными (8 часов)

108

Равносильность систем

1

13.04.23



109

Равносильность систем

1

13.04.23



110

Система-следствие

1

14.04.23



111

Система-следствие

1

17.04.23



112

Метод замены неизвестных

1

20.04.23



113

Метод замены неизвестных

1

20.04.23



114

Рассуждения с числовым значением при решении уравнений и неравенств

1

21.04.23



115

Контрольная работа № 7 по теме «Решение уравнений и неравенств»

1

24.04.23



Итоговое повторение (14 часов)

116

Повторение. Арифметические действия с числами

1

27.04.23



117

Повторение. Алгебраические выражения

1

27.04.23



118

Повторение. Алгебраические преобразования

1

28.04.23



119

Повторение. Преобразование числовых и буквенных выражений

1

04.05.23



120

Повторение. Функции и их графики

1

04.05.23



121

Повторение. Функции. Область определения и область изменения

1

05.05.23



122

Повторение. Решение уравнений и неравенств

1

11.05.23



123

Повторение. Основные приемы решения систем уравнений

1

11.05.23



124

Повторение. Производная

1

12.05.23



125

Повторение. Применение производной

1

15.05.23



126

Повторение. Решение текстовых задач

1

18.05.23



127

Повторение. Решение текстовых задач

1

18.05.23



128

Повторение. Решение текстовых задач

1

19.05.23



129

Итоговая контрольная работа

1

22.05.23



130-136

Резерв

7





Календарно-тематическое планирование

по геометрии

(2 часа в неделю, всего 68 часов)


Учебник: Л.С.Атанасян и др. Геометрия. Учебник для 10-11 класса для общеобразовательных учреждений.– М.: Просвещение, 2020.


урока

Тема урока

Кол-во

часов

Дата проведения


Примечание

По плану

Факти

чески

Повторение (2 часа)

1

Повторение. Параллельность и перпендикулярность прямых и плоскостей

1

06.09.22



2

Повторение. Многогранники

1

06.09.22



Цилиндр, конус, шар (14 часов)

3

Понятие цилиндра. Площадь поверхности цилиндра.

1

13.09.22



4

Решение задач по теме «Понятие цилиндра. Площадь поверхности цилиндра»

1

13.09.22



5

Решение задач по теме «Понятие цилиндра. Площадь поверхности цилиндра»

1

20.09.22



6

Понятие конуса. Площадь поверхности конуса

1

20.09.22



7

Усеченный конус

1

27.09.22



8

Решение задач по теме «Конус. Площадь поверхности конуса»

1

27.09.22



9

Решение задач по теме «Усеченный конус»

1

04.10.22



10

Сфера и шар. Уравнение сферы

1

04.10.22



11

Взаимное расположение сферы и плоскости. Касательная плоскость к сфере

1

11.10.22



12

Площадь сферы. Сфера, вписанная в цилиндрическую поверхность

1

11.10.22



13

Решение задач на тему «Цилиндр»

1

18.10.22



14

Решение задач на тему «Конус. Шар»

1

18.10.22



15

Контрольная работа № 1 по теме «Цилиндр. Конус. Шар»

1

25.10.22



16

Зачет по теме «Цилиндр. Конус. Шар»

1

25.10.22



Объемы тел (18 часов)

17

Понятие объема

1

08.11.22



18

Объем прямоугольного параллелепипеда

1

08.11.22



19

Объем прямой призмы

1

15.11.22



20

Объем цилиндра

1

15.11.22



21

Решение задач по теме «Объем призмы»

1

22.11.22



22

Решение задач по теме «Объем цилиндра»

1

22.11.22



23

Вычисление объемов тел с помощью определенных интегралов

1

29.11.22



24

Объем наклонной призмы

1

29.11.22



25

Объем пирамиды. Тестовые задания из ЕГЭ

1

06.12.22



26

Объем пирамиды. Тестовые задания из ЕГЭ

1

06.12.22



27

Объем конуса. Тестовые задания из ЕГЭ

1

13.12.22



28

Объем шара. Тестовые задания из ЕГЭ

1

13.12.22



29

Объем шара. Тестовые задания из ЕГЭ

1

20.12.22



30

Объем шарового сегмента, шарового слоя и шарового сектора

1

20.12.22



31

Площадь сферы. Тестовые задания из ЕГЭ

1

10.01.23



32

Площадь сферы. Тестовые задания из ЕГЭ

1

10.01.23



33

Контрольная работа № 2 по теме «Объемы тел»

1

17.01.23



34

Зачет по теме «Объемы тел»

1

17.01.23



Векторы в пространстве (6 часов)

35

Понятие вектора в пространстве. Равенство векторов

1

24.01.23



36

Сложение и вычитание векторов

1

24.01.23



37

Умножение вектора на число

1

31.01.23



38

Компланарные векторы

1

31.01.23



39

Правило параллелепипеда. Разложение вектора по трем некомпланарным векторам

1

07.02.23



40

Зачет по теме «Векторы в пространстве»

1

07.02.23



Метод координат в пространстве (12 часов)

41

Прямоугольная система координат в пространстве

1

14.02.23



42

Координаты вектора. Связь между координатами вектора и координатами точек

1

14.02.23



43

Простейшие задачи в координатах

1

21.02.23



44

Простейшие задачи в координатах

1

21.02.23



45

Угол между векторами

1

28.02.23



46

Скалярное произведение векторов

1

28.02.23



47

Вычисление углов между прямыми и плоскостями

1

07.03.23



48

Решение задач на вычисление угла между векторами, скалярного произведения векторов

1

07.03.23



49

Движения. Центральная симметрия. Осевая симметрия.

1

14.03.23



50

Параллельный перенос. Преобразование подобия

1

14.03.23



51

Контрольная работа № 3 по теме «Метод координат в пространстве»

1

21.03.23



52

Зачет по теме «Метод координат в пространстве»

1

21.03.23



Итоговое повторение (14 часов)

53

Повторение. Аксиомы стереометрии. Взаимное расположение прямых и плоскостей

1

04.04.23



54

Повторение. Перпендикулярность прямой и плоскости. Теорема о трех перпендикулярах

1

04.04.23



55

Повторение. Перпендикулярность плоскостей. Двугранный угол

1

11.04.23



56

Повторение. Многогранники и площадь их поверхностей

1

11.04.23



57

Повторение. Многогранники и площадь их поверхностей

1

18.04.23



58

Повторение. Цилиндр. Конус. Шар

1

18.04.23



59

Повторение. Цилиндр. Конус. Шар

1

25.04.23



60

Повторение. Объемы тел

1

25.04.23



61

Повторение. Объемы тел

1

02.05.23



62

Повторение. Комбинации тел

1

02.05.22



63

Повторение. Вписанные и описанные многогранники

1

16.05.23



64

Повторение. Решение разных задач

1

16.05.23



65

Повторение. Решение разных задач

1

23.05.23



66

Контрольная работа №6 (итоговая)

1

23.05.23



67-68

Резерв

2