СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
Рабочая программа к линии Дорофеев, Шарыгин 5-9 класс
РАБОЧАЯ ПРОГРАММА ПО ПРЕДМЕТУ
Математика
5-9 класс
Разработал: учитель математики И.В. Ключанских, ВКК
Рассмотрено на заседании
педагогического совета
протокол № ____ от
«_ _»____________20___ г.
Пояснительная записка
Рабочая программа по математике для 5-9 класса составлена в соответствии с правовыми и нормативными документами:
Федеральный Закон «Об образовании в Российской Федерации» от 29.12. 2012 г. № 273-ФЗ (с изменениями от 01.03.2020 № 47- ФЗ, от 31.07.2020 № 30- ФЗ);
Федеральный государственный образовательный стандарт основного общего образования, утв. приказом Минобрнауки России от 17 декабря 2010 г. N 1897 ( с изменениями от 29.12.2014 г. № 1644; от 31.12.2015 №1577; от 11.12.2020 №712);
приказ Министерства просвещения от от 20.05.2020 г. №254 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»( с изменениями и дополнениями от 23.12.2020 № 766)
Основная образовательная программа ООО МБОУ СОШ №37 (ФГОС);
Учебный план МБОУ СОШ №37
- программа по предмету математика – 5-6 класс Г.В.Дорофеева, И.Ф.Шарыгина, С.Б.Суворовой т др. (Сборник рабочих программ. Пособие для учителей общеобразовательных учреждений ФГОС. - 4-е изд. /Сост. Бурмистрова Т.А. – М.: Просвещение, 2016. – 80 с.)
- программа по алгебре к учебному комплексу для 7-9 классов (авторы Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др., составитель Т.А.Бурмистрова; М: «Просвещение», 2014).
программы основного общего образования и авторской программы Л.С. Атанасяна. М.: Просвещение, 2010.
Примерная программа по предмету в соответствии с положениями Федерального государственного образовательного стандарта основного общего образования второго поколения, на основе примерной Программы основного общего образования по математике, УМК:
5 класс: “Математика-5”, авт. Г.В. Дорофеев, И.Ф. Шарыгин, С.Б.Суворова, др.- М.: Просвещение, 2019).
Рабочая тетрадь “Математика-5”, авт. Г.В. Дорофеев, И.Ф. Шарыгин, С.Б.Суворова, др.- М.: Просвещение, 2019).
6 класс: «Математика- 6 » Учебник для 6 класса общеобразовательных организаций /Г.В. Дорофеев, С.Б. Суворова, Е.А. Бунимович и др; под ред. Г.В. Дорофеева, И.Ф. Шарыгина.-М.: Просвещение, 2019г.
Рабочая тетрадь для 6 класса общеобразовательных учреждений /Г.В.Дорофеев, Л.В.Кузнецова и др. – М.: Просвещение, 2018г.
7 класс Алгебра : Дорофеев Г. В. Алгебра, 7 кл.: учебник для общеобразовательных организаций / Г. В. Дорофеев, С. Б. Суворова, Е. А. Бунимович и др. — М.: Просвещение, 2019
Рабочая тетрадь Минаева С. С. Алгебра, 7 кл.: / С. С. Минаева, Л. О. Рослова. — М.: Просвещение, 2019.
Кузнецова Л. В. Алгебра, 7 кл.: контрольные работы /Л. В. Кузнецова, С. С. Минаева, Л. О. Рослова. — М.: Просвещение, 2019.
8 класс Алгебра: «Алгебра 8 класс», авторы: Г.В.Дорофееф, С.Б. Суворова, Е.А. Бунилович, Л.В. Кузнецова, С.С. Минаева, Л.О. Рослова. Учебник для общеобразовательных организаций– 7-е изд., перераб. – М.: Просвещение, 2019. – 320 с.
9 класс Алгебра: «Алгебра 9 класс» : Г.В.Дорофееф, С.Б. Суворова, Е.А. Бунилович, Л.В. Кузнецова, С.С. Минаева, Л.О. Рослова. Учебник для общеобразовательных организаций– 7-е изд., перераб. – М.: Просвещение, 2019.г
Геометрия: «Геометрия, 7 - 9» авторы Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. М.: Просвещение, 2018 г.
Учебный план отводит 875 часов на освоение предмета математика на уровне основного общего образования (5-9 класс).
Всего за год: 5класс-175 часов(5 часов в неделю), 6 класс-175 часов(5 часов в неделю), 7 класс алгебра-105 часов(3 часа в неделю), геометрия -70 часов( 2 часа в неделю), 8 класс алгебра- 105 часов(3 часа в неделю), геометрия 70 часов( 2 часа в неделю), 9класс алгебра- 102 часа(3 часа в неделю), геометрия -68 часов( 2 часа в неделю).
Программой предусмотрено проведение:
по математике:
контрольных работа- 17
по алгебре:
Контрольных работ – 22
Итоговых контрольных работ- 3
по геометрии:
Контрольных работ – 16
Цели: I В направлении личностного развития:
формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей;
II В метапредметном направлении:
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
III В предметном направлении:
• овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Задачи:
овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;
способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;
воспитывать культуру личности, отношение к математики как части общечеловеческой культуры, играющей особую роль в общественном развитии.
Целью изучения курса математики в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.
Целью изучения курса алгебры в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.
Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.
1.Планируемы результаты освоения учебного предмета «Математика»
Достижения личностных результатов
Личностными результатами изучения предмета «Математика» (в виде учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Алгебра» и «Геометрия») являются следующие качества:
– независимость и критичность мышления;
– воля и настойчивость в достижении цели.
Средством достижения этих результатов является:
– система заданий учебников;
– представленная в учебниках в явном виде организация материала по принципу минимакса;
– использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.
Достижения метапредметных результатов
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
5–6-й классы
– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
– выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
7–9-й классы
– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;
– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
– планировать свою индивидуальную образовательную траекторию;
– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
– в ходе представления проекта давать оценку его результатам;
– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
– уметь оценить степень успешности своей индивидуальной образовательной деятельности;
– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).
Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
5–9-й классы
– анализировать, сравнивать, классифицировать и обобщать факты и явления;
– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
– создавать математические модели;
– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
– вычитывать все уровни текстовой информации;
– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность;
– понимая позицию другого человека, различать в его речи или созданных им текстах: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания;
– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.
Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития.
1-я ЛР – Использование математических знаний для решения различных математических задач и оценки полученных результатов.
2-я ЛР – Совокупность умений по использованию доказательной математической речи.
3-я ЛР – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.
4-я ЛР – Умения использовать математические средства для изучения и описания реальных процессов и явлений.
5-я ЛР – Независимость и критичность мышления.
6-я ЛР – Воля и настойчивость в достижении цели.
Коммуникативные УУД:
5–9-й классы
– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
– в дискуссии уметь выдвинуть контраргументы;
– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, а также использование на уроках элементов технологии продуктивного чтения.
Достижения предметных результатов
Разделы | Обучающийся (выпускник) научится | Обучающийся (выпускник) получит возможность научиться |
Натуральные числа. Дроби. Рациональные числа
| понимать особенности десятичной системы счисления; оперировать понятиями, связанными с делимостью натуральных чисел; выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации; сравнивать и упорядочивать рациональные числа; выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора; использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты. | познакомиться с позиционными системами счисления с основаниями, отличными от 10; углубить и развить представления о натуральных числах и свойствах делимости; научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ. |
Действительные числа
| использовать начальные представления о множестве действительных чисел; оперировать понятием квадратного корня, применять его в вычислениях. | развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике; развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби). |
Измерения, приближения, оценки
| использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин. | понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения; понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных. |
Алгебраические выражения
| оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами; выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни; выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями; выполнять разложение многочленов на множители. | выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов; применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения). |
Уравнения
| решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными; понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом; применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными. | овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики; применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты. |
Неравенства
| понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств; решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления; применять аппарат неравенств для решения задач из различных разделов курса. | разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики; применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты. |
Основные понятия. Числовые функции
| понимать и использовать функциональные понятия и язык (термины, символические обозначения); строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков; понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами. | проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.); использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса. |
Числовые последовательности
| понимать и использовать язык последовательностей (термины, символические обозначения); применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни. | решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств; понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом. |
Описательная статистика
| Выпускник научится использовать простейшие способы представления и анализа статистических данных.
| Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы. |
Случайные события и вероятность | Выпускник научится находить относительную частоту и вероятность случайного события.
| приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов. |
Комбинаторика
| решать комбинаторные задачи на нахождение числа объектов или комбинаций. | Научиться некоторым специальным приёмам решения комбинаторных задач. |
Наглядная геометрия
| распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры; распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса; строить развёртки куба и прямоугольного параллелепипеда; определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот; вычислять объём прямоугольного параллелепипеда. | научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов; углубить и развить представления о пространственных геометрических фигурах; научиться применять понятие развёртки для выполнения практических расчётов. |
Геометрические фигуры
| пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения; распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации; находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос); оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов; решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств; решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки; решать простейшие планиметрические задачи в пространстве. | овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек; приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач; овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование; научиться решать задачи на построение методом геометрического места точек и методом подобия; приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ; приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле». |
Измерение геометрических величин | использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла; вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов; вычислять длину окружности, длину дуги окружности; вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур; решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур; решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства). | вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора; вычислять площади многоугольников, используя отношения равновеликости и равносоставленности; применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников |
Координаты
| вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка; использовать координатный метод для изучения свойств прямых и окружностей. | овладеть координатным методом решения задач на вычисления и доказательства; приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых; приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства». |
Векторы
| оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число; находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы; вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых. | овладеть векторным методом для решения задач на вычисления и доказательства; приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства». |
Ученик научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)
Оперировать на базовом уровне1 понятиями: множество, элемент множества, подмножество, принадлежность;
задавать множества перечислением их элементов;
находить пересечение, объединение, подмножество в простейших ситуациях.
В повседневной жизни и при изучении других предметов:
распознавать логически некорректные высказывания.
Числа
Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;
использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;
использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
выполнять округление рациональных чисел в соответствии с правилами;
сравнивать рациональные числа.
В повседневной жизни и при изучении других предметов:
оценивать результаты вычислений при решении практических задач;
выполнять сравнение чисел в реальных ситуациях;
составлять числовые выражения при решении практических задач и задач из других учебных предметов.
Статистика и теория вероятностей
Представлять данные в виде таблиц, диаграмм,
читать информацию, представленную в виде таблицы, диаграммы.
Текстовые задачи
Решать несложные сюжетные задачи разных типов на все арифметические действия;
строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;
осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
составлять план решения задачи;
выделять этапы решения задачи;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
решать задачи на нахождение части числа и числа по его части;
решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;
решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)
Наглядная геометрия
Геометрические фигуры
Оперировать на базовом уровне понятиями: фигура,точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.
В повседневной жизни и при изучении других предметов:
решать практические задачи с применением простейших свойств фигур.
Измерения и вычисления
выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
вычислять площади прямоугольников.
В повседневной жизни и при изучении других предметов:
вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;
выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.
История математики
описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.
Ученик получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях)
Элементы теории множеств и математической логики
Оперировать2 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,
определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.
В повседневной жизни и при изучении других предметов:
распознавать логически некорректные высказывания;
строить цепочки умозаключений на основе использования правил логики.
Числа
Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;
понимать и объяснять смысл позиционной записи натурального числа;
выполнять вычисления, в том числе с использованием приёмов рациональных вычислений, обосновывать алгоритмы выполнения действий;
использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;
выполнять округление рациональных чисел с заданной точностью;
упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;
находить НОД и НОК чисел и использовать их при решении зада;.
оперировать понятием модуль числа, геометрическая интерпретация модуля числа.
В повседневной жизни и при изучении других предметов:
применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.
Уравнения и неравенства
Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.
Статистика и теория вероятностей
Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,
извлекать, информацию, представленную в таблицах, на диаграммах;
составлять таблицы, строить диаграммы на основе данных.
В повседневной жизни и при изучении других предметов:
извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.
Текстовые задачи
Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
моделировать рассуждения при поиске решения задач с помощью граф-схемы;
выделять этапы решения задачи и содержание каждого этапа;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;
решать разнообразные задачи «на части»,
решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.
В повседневной жизни и при изучении других предметов:
выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
решать задачи на движение по реке, рассматривая разные системы отсчета.
Наглядная геометрия
Геометрические фигуры
Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.
Измерения и вычисления
выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
вычислять площади прямоугольников, квадратов, объёмы прямоугольных параллелепипедов, кубов.
В повседневной жизни и при изучении других предметов:
вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объёмы комнат;
выполнять простейшие построения на местности, необходимые в реальной жизни;
оценивать размеры реальных объектов окружающего мира.
История математики
Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.
Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)
Элементы теории множеств и математической логики
Оперировать на базовом уровне3 понятиями: множество, элемент множества, подмножество, принадлежность;
задавать множества перечислением их элементов;
находить пересечение, объединение, подмножество в простейших ситуациях;
оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
приводить примеры и контрпримеры для подтвержнения своих высказываний.
В повседневной жизни и при изучении других предметов:
использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.
Числа
Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;
использовать свойства чисел и правила действий при выполнении вычислений;
использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
выполнять округление рациональных чисел в соответствии с правилами;
оценивать значение квадратного корня из положительного целого числа;
распознавать рациональные и иррациональные числа;
сравнивать числа.
В повседневной жизни и при изучении других предметов:
оценивать результаты вычислений при решении практических задач;
выполнять сравнение чисел в реальных ситуациях;
составлять числовые выражения при решении практических задач и задач из других учебных предметов.
Тождественные преобразования
Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.
В повседневной жизни и при изучении других предметов:
понимать смысл записи числа в стандартном виде;
оперировать на базовом уровне понятием «стандартная запись числа».
Уравнения и неравенства
Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
проверять справедливость числовых равенств и неравенств;
решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
решать системы несложных линейных уравнений, неравенств;
проверять, является ли данное число решением уравнения (неравенства);
решать квадратные уравнения по формуле корней квадратного уравнения;
изображать решения неравенств и их систем на числовой прямой.
В повседневной жизни и при изучении других предметов:
составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.
Функции
Находить значение функции по заданному значению аргумента;
находить значение аргумента по заданному значению функции в несложных ситуациях;
определять положение точки по её координатам, координаты точки по её положению на координатной плоскости;
по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
строить график линейной функции;
проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
определять приближённые значения координат точки пересечения графиков функций;
оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.
В повседневной жизни и при изучении других предметов:
использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
использовать свойства линейной функции и ее график при решении задач из других учебных предметов.
Статистика и теория вероятностей
Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
решать простейшие комбинаторные задачи методом прямого и организованного перебора;
представлять данные в виде таблиц, диаграмм, графиков;
читать информацию, представленную в виде таблицы, диаграммы, графика;
определять основные статистические характеристики числовых наборов;
оценивать вероятность события в простейших случаях;
иметь представление о роли закона больших чисел в массовых явлениях.
В повседневной жизни и при изучении других предметов:
оценивать количество возможных вариантов методом перебора;
иметь представление о роли практически достоверных и маловероятных событий;
сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
оценивать вероятность реальных событий и явлений в несложных ситуациях.
Текстовые задачи
Решать несложные сюжетные задачи разных типов на все арифметические действия;
строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;
осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
составлять план решения задачи;
выделять этапы решения задачи;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
решать задачи на нахождение части числа и числа по его части;
решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).
Геометрические фигуры
Оперировать на базовом уровне понятиями геометрических фигур;
извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;
применять для решения задач геометрические факты, если условия их применения заданы в явной форме;
решать задачи на нахождение геометрических величин по образцам или алгоритмам.
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.
Отношения
Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.
В повседневной жизни и при изучении других предметов:
использовать отношения для решения простейших задач, возникающих в реальной жизни.
Измерения и вычисления
Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;
применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.
В повседневной жизни и при изучении других предметов:
вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.
Геометрические построения
Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.
В повседневной жизни и при изучении других предметов:
выполнять простейшие построения на местности, необходимые в реальной жизни.
Геометрические преобразования
Строить фигуру, симметричную данной фигуре относительно оси и точки.
В повседневной жизни и при изучении других предметов:
распознавать движение объектов в окружающем мире;
распознавать симметричные фигуры в окружающем мире.
Векторы и координаты на плоскости
Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число,координаты на плоскости;
определять приближённо координаты точки по её изображению на координатной плоскости.
В повседневной жизни и при изучении других предметов:
использовать векторы для решения простейших задач на определение скорости относительного движения.
История математики
Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
понимать роль математики в развитии России.
Методы математики
Выбирать подходящий изученный метод для решении изученных типов математических задач;
Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.
Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях
Элементы теории множеств и математической логики
Оперировать4 понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
изображать множества и отношение множеств с помощью кругов Эйлера;
определять принадлежность элемента множеству, объединению и пересечению множеств;
задавать множество с помощью перечисления элементов, словесного описания;
оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);
строить высказывания, отрицания высказываний.
В повседневной жизни и при изучении других предметов:
строить цепочки умозаключений на основе использования правил логики;
использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.
Числа
Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
понимать и объяснять смысл позиционной записи натурального числа;
выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;
выполнять округление рациональных чисел с заданной точностью;
сравнивать рациональные и иррациональные числа;
представлять рациональное число в виде десятичной дроби
упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;
находить НОД и НОК чисел и использовать их при решении задач.
В повседневной жизни и при изучении других предметов:
применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;
записывать и округлять числовые значения реальных величин с использованием разных систем измерения.
Тождественные преобразования
Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
выделять квадрат суммы и разности одночленов;
раскладывать на множители квадратный трёхчлен;
выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
выполнять преобразования выражений, содержащих квадратные корни;
выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
выполнять преобразования выражений, содержащих модуль.
В повседневной жизни и при изучении других предметов:
выполнять преобразования и действия с числами, записанными в стандартном виде;
выполнять преобразования алгебраических выражений при решении задач других учебных предметов.
Уравнения и неравенства
Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
решать дробно-линейные уравнения;
решать простейшие иррациональные уравнения вида ,
;
решать уравнения вида ;
решать уравнения способом разложения на множители и замены переменной;
использовать метод интервалов для решения целых и дробно-рациональных неравенств;
решать линейные уравнения и неравенства с параметрами;
решать несложные квадратные уравнения с параметром;
решать несложные системы линейных уравнений с параметрами;
решать несложные уравнения в целых числах.
В повседневной жизни и при изучении других предметов:
составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.
Функции
Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;
строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: ,
,
,
;
на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
исследовать функцию по её графику;
находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;
оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
решать задачи на арифметическую и геометрическую прогрессию.
В повседневной жизни и при изучении других предметов:
иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
использовать свойства и график квадратичной функции при решении задач из других учебных предметов.
Текстовые задачи
Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;
знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
моделировать рассуждения при поиске решения задач с помощью граф-схемы;
выделять этапы решения задачи и содержание каждого этапа;
уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
анализировать затруднения при решении задач;
выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;
решать разнообразные задачи «на части»,
решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
владеть основными методами решения задач на смеси, сплавы, концентрации;
решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
решать несложные задачи по математической статистике;
овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
решать задачи на движение по реке, рассматривая разные системы отсчета.
Статистика и теория вероятностей
Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
извлекать информацию, представленную в таблицах, на диаграммах, графиках;
составлять таблицы, строить диаграммы и графики на основе данных;
оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
применять правило произведения при решении комбинаторных задач;
оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;
представлять информацию с помощью кругов Эйлера;
решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.
В повседневной жизни и при изучении других предметов:
извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
оценивать вероятность реальных событий и явлений.
Геометрические фигуры
Оперировать понятиями геометрических фигур;
извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;
формулировать в простейших случаях свойства и признаки фигур;
доказывать геометрические утверждения;
владеть стандартной классификацией плоских фигур (треугольников и четырёхугольников).
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.
Отношения
Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;
характеризовать взаимное расположение прямой и окружности, двух окружностей.
В повседневной жизни и при изучении других предметов:
использовать отношения для решения задач, возникающих в реальной жизни.
Измерения и вычисления
Оперировать представлениями о длине, площади, объёме как величинами. Применять теорему Пифагора, формулы площади, объёма при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объёма, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;
проводить простые вычисления на объёмных телах;
формулировать задачи на вычисление длин, площадей и объёмов и решать их.
В повседневной жизни и при изучении других предметов:
проводить вычисления на местности;
применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.
Геометрические построения
Изображать геометрические фигуры по текстовому и символьному описанию;
свободно оперировать чертёжными инструментами в несложных случаях,
выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;
изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.
В повседневной жизни и при изучении других предметов:
выполнять простейшие построения на местности, необходимые в реальной жизни;
оценивать размеры реальных объектов окружающего мира.
Преобразования
Оперировать понятием движения и преобразования подобия, владеть приёмами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;
строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;
применять свойства движений для проведения простейших обоснований свойств фигур.
В повседневной жизни и при изучении других предметов:
применять свойства движений и применять подобие для построений и вычислений.
Векторы и координаты на плоскости
Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;
выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;
применять векторы и координаты для решения геометрических задач на вычисление длин, углов.
В повседневной жизни и при изучении других предметов:
использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.
История математики
Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
понимать роль математики в развитии России.
Методы математики
Используя изученные методы, проводить доказательство, выполнять опровержение;
выбирать изученные методы и их комбинации для решения математических задач;
использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.
Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углублённом уровне
Элементы теории множеств и математической логики
Свободно оперировать5 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;
задавать множества разными способами;
проверять выполнение характеристического свойства множества;
свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний; истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не;условные высказывания (импликации);
строить высказывания с использованием законов алгебры высказываний.
В повседневной жизни и при изучении других предметов:
строить рассуждения на основе использования правил логики;
использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов.
Числа
Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
переводить числа из одной системы записи (системы счисления) в другую;
доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;
выполнять округление рациональных и иррациональных чисел с заданной точностью;
сравнивать действительные числа разными способами;
упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
находить НОД и НОК чисел разными способами и использовать их при решении задач;
выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.
В повседневной жизни и при изучении других предметов:
выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.
Тождественные преобразования
Свободно оперировать понятиями степени с целым и дробным показателем;
выполнять доказательство свойств степени с целыми и дробными показателями;
оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;
свободно владеть приемами преобразования целых и дробно-рациональных выражений;
выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приёмов;
использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трёхчлена и для решения задач, в том числе задач с параметрами на основе квадратного трёхчлена;
выполнять деление многочлена на многочлен с остатком;
доказывать свойства квадратных корней и корней степени n;
выполнять преобразования выражений, содержащих квадратные корни, корни степени n;
свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;
выполнять различные преобразования выражений, содержащих модули.
В повседневной жизни и при изучении других предметов:
выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;
выполнять преобразования рациональных выражений при решении задач других учебных предметов;
выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей.
Уравнения и неравенства
Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;
знать теорему Виета для уравнений степени выше второй;
понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
владеть разными методами доказательства неравенств;
решать уравнения в целых числах;
изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.
В повседневной жизни и при изучении других предметов:
составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.
Функции
Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, чётность/нечётность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,
строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;
использовать преобразования графика функции для построения графиков функций
;
анализировать свойства функций и вид графика в зависимости от параметров;
свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;
использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;
исследовать последовательности, заданные рекуррентно;
решать комбинированные задачи на арифметическую и геометрическую прогрессии.
В повседневной жизни и при изучении других предметов:
конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;
использовать графики зависимостей для исследования реальных процессов и явлений;
конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.
Статистика и теория вероятностей
Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
выбирать наиболее удобный способ представления информации, адекватный её свойствам и целям анализа;
вычислять числовые характеристики выборки;
свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;
свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
знать примеры случайных величин, и вычислять их статистические характеристики;
использовать формулы комбинаторики при решении комбинаторных задач;
решать задачи на вычисление вероятности в том числе с использованием формул.
В повседневной жизни и при изучении других предметов:
представлять информацию о реальных процессах и явлениях способом, адекватным её свойствам и цели исследования;
анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;
оценивать вероятность реальных событий и явлений в различных ситуациях.
Текстовые задачи
Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;
распознавать разные виды и типы задач;
использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;
различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;
знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);
моделировать рассуждения при поиске решения задач с помощью граф-схемы;
выделять этапы решения задачи и содержание каждого этапа;
уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
анализировать затруднения при решении задач;
выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;
анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние).при решение задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;
исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;
решать разнообразные задачи «на части»;
решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;
решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
решать несложные задачи по математической статистике;
овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
конструировать новые для данной задачи задачные ситуации с учётом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
решать задачи на движение по реке, рассматривая разные системы отсчёта;
конструировать задачные ситуации, приближенные к реальной действительности.
Геометрические фигуры
Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;
самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;
исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;
решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
формулировать и доказывать геометрические утверждения.
В повседневной жизни и при изучении других предметов:
составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат.
Отношения
Владеть понятием отношения как метапредметным;
свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
использовать свойства подобия и равенства фигур при решении задач.
В повседневной жизни и при изучении других предметов:
использовать отношения для построения и исследования математических моделей объектов реальной жизни.
Измерения и вычисления
Свободно оперировать понятиями длина, площадь, объём, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объёмов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырёхугольника, а также с применением тригонометрии;
самостоятельно формулировать гипотезы и проверять их достоверность.
В повседневной жизни и при изучении других предметов:
свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни.
Геометрические построения
Оперировать понятием набора элементов, определяющих геометрическую фигуру,
владеть набором методов построений циркулем и линейкой;
проводить анализ и реализовывать этапы решения задач на построение.
В повседневной жизни и при изучении других предметов:
выполнять построения на местности;
оценивать размеры реальных объектов окружающего мира.
Преобразования
Оперировать движениями и преобразованиями как метапредметными понятиями;
оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;
использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах;
пользоваться свойствами движений и преобразований при решении задач.
В повседневной жизни и при изучении других предметов:
применять свойства движений и применять подобие для построений и вычислений.
Векторы и координаты на плоскости
Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;
владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;
выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;
использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.
В повседневной жизни и при изучении других предметов:
использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.
История математики
Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;
рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.
Методы математики
Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;
владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;
характеризовать произведения искусства с учётом математических закономерностей в природе, использовать математические закономерности в самостоятельном
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА.
Раздел 1. Линии
Разнообразный мир линий. Прямая. Отрезок. Луч. Ломаная. Длина отрезка. Длина линии. Окружность и ее элементы. Решение упражнений по теме «Окружность».
Раздел 2. Натуральные числа
Как записывают и читают числа. Римская нумерация. Чтение и запись многозначных чисел. Сравнение натуральных чисел. Двойные неравенства. Числа и точки на прямой. Правило округления натуральных чисел. Перебор возможных вариантов. Дерево возможных вариантов.
Контрольная работа №1 по теме «Линии. Натуральные числа».
Раздел 3. Действия с натуральными числами
Сложение натуральных чисел. Свойства сложения. Вычитание натуральных чисел. Свойства вычитания. Решение уравнений на вычитание. Умножение натуральных чисел. Свойства умножения. Деление натуральных чисел. Свойства деления. Решение текстовых задач на деление. Степень числа. Решение задач на движение.
Контрольная работа № 2 по теме «Действия с натуральными числами».
Раздел 4. Использование свойств действий при вычислениях
Свойства сложения и умножения. Распределительное свойство. Введение частей при решении задач на сравнение. Решение задач на уравнивание.
Контрольная работа № 3 по теме «Использование свойств действий при вычислениях».
Раздел 5. Многоугольники
Как обозначают и сравнивают углы. Тупой, острый, прямой, развернутый углы. Решение упражнений. Биссектриса угла. Решение задач на нахождение величин углов. Углы и многоугольники. Периметр, диагонали многоугольника.
Математический диктант по теме «Многоугольники».
Раздел 6. Делимость чисел
Множества, подмножества. Делители и кратные числа. НОД, НОК. Простые и составные числа. Таблица простых чисел. Признаки делимости на 2, на 10, на5, на3, на9, на 25 и на 4. Деление с остатком. Решение арифметических задач.
Контрольная работа №4 по теме «Многоугольники. Делимость чисел».
Раздел 7. Треугольники и четырехугольники
Треугольники и их виды. Построение треугольников. Нахождение периметра треугольника. Прямоугольник. Квадрат. Свойства. Построение равных фигур. Площадь прямоугольника. Площадь квадрата.
Раздел 8. Дроби
Доли. Определение обыкновенной дроби. Правильные и неправильные дроби. Расположение дробей на координатной прямой. Основное свойство дроби. Равные дроби. Сокращение дробей.
Контрольная работа №5 по теме «Дроби»
Раздел 9. Действия с дробями
Сложение дробей с одинаковыми, разными знаменателями. Выделение целой части из неправильной дроби. Представление в виде дроби смешанного числа. Сложение смешанных чисел. Вычитание дробей с одинаковыми, разными знаменателями. Сравнение дробей с одинаковыми знаменателями.
Контрольная работа №6 по теме «Сложение и вычитание дробей».
Контрольная работа №7 по теме «Действия с дробями».
Раздел 10. Многогранники
Цилиндр, шар, конус и их изображение. Многогранники и их изображение. Параллелепипед, измерения параллелепипеда. Объем параллелепипеда. Единицы объема. Куб. Объем куба. Пирамида. Виды пирамид.
Урок – игра «Веселая математика».
Раздел 11. Таблицы и диаграммы
Чтение, составление таблиц. Чтение и составление диаграмм. Опрос общественного мнения. Представление информации в виде таблиц. Работа с таблицами результатов общественного мнения.
Тестирование.
Раздел 12. Повторение
Линии. Натуральные числа. Действия с натуральными числами. Свойства действий при вычислениях. Углы. Делимость чисел. Площадь прямоугольника. Обыкновенные дроби. Действия с обыкновенными дробями.
Итоговая контрольная работа.
6 класс Математика
Раздел 1. Дроби и проценты
Что мы знаем о дробях. Вычисления с дробями. «Многоэтажные» дроби. Основные задачи на дроби. Что такое процент. Столбчатые и круговые диаграммы. Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.
Контрольная работа №1 по теме: "Обыкновенные дроби".
Раздел 2. Прямые на плоскости и в пространстве.
Пересекающиеся прямые. Параллельные прямые. Расстояние.
Практическая работа №1
Раздел 3. Десятичные дроби.
Десятичная запись дробей. Десятичные дроби и метрическая система мер. Перевод обыкновенной дроби в десятичную. Сравнение десятичных дробей..
Контрольная работа №2 по теме: «Десятичные дроби».
Раздел 4. Действия с десятичными дробями.
Сложение и вычитание десятичных дробей. Умножение и деление десятичной дроби на 10, 100, 1000. Умножение десятичных дробей. Деление десятичных дробей. Округление десятичных дробей. Задачи на движение.
Контрольная работа №3 по теме: "Действия с десятичными дробями".
Раздел 5. Окружность.
Окружность и прямая. Две окружности на плоскости. Построение треугольника. Круглые тела.
Урок-тестирование
Раздел 6. Отношения и проценты.
Что такое отношение. Деление в данном отношении. «Главная» задача на проценты. Выражение отношения в процентах.
Контрольная работа №4 по теме: "Отношения и проценты".
Раздел 7. Симметрия. Осевая симметрия. Ось симметрии фигуры. Центральная симметрия. Свойства Симметрии
Урока - игра «Своя Игра».
Раздел 8. Выражения, формулы, уравнения.
О математическом языке. Буквенные выражения и числовые подстановки. Формулы. Вычисления по формулам. Формулы длины окружности, площади круга и объема шара. Что такое уравнение. Составление формул. Формула периметра треугольника, периметра и площади прямоугольника и квадрата. Формула объема прямоугольного параллелепипеда.
Контрольная работа №5 по теме:"Выражения, формулы, уравнения".
Раздел 9. Целые числа. Какие числа называют целыми. Сравнение целых чисел. Сложение целых чисел. Вычитание целых чисел. Умножение и деление целых чисел.
Урок – проект.
Раздел 10. Множества. Комбинаторика.
Понятие множества. Операции над множествами. Решение задач с помощью кругов Эйлера. Комбинаторные задачи. Логика перебора. Перебор всех возможных вариантов. Дерево возможных вариантов. Кодирование. Сравнение шансов. Случайные события и их виды: равновероятные, маловероятные достоверные, невозможные. Эксперименты со случайными исходами. Теория вероятности.
Контрольная работа №6 по теме: "Целые числа".
Раздел 11. Рациональные числа.
Какие числа называют рациональными. Сравнение рациональных чисел. Модуль числа. Действия с рациональными числами. Что такое координаты. Прямоугольные координаты на плоскости.
Контрольная работа №7 по теме: "Рациональные числа"
Раздел 12. Многоугольники и многогранники.
Параллелограмм. Площади. Призма. Площади. Сумма углов треугольника. Свойство углов при основании равнобедренного треугольника. Виды параллелограмма: ромб, прямоугольник квадрат. Их свойства. Единицы измерения площадей. Равновеликие и равносоставленные фигуры. Перекраивание фигур.
Контрольная работа №8 по теме: «Многоугольники и многогранники».
Раздел 13. Повторение
Арифметические действия с обыкновенными дробями. Проценты. Прямые на плоскости и в пространстве. Арифметические действия с десятичными дробями. Арифметические действия с рациональными числами. Решение текстовых задач с помощью уравнений. Прямоугольные координаты на плоскости.
Итоговая контрольная работа.
.
7 класс Алгебра
Раздел 1. Дроби и проценты.
Сравнение рациональных чисел. Арифметические действия с рациональными числами. Степень с натуральным показателем. Проценты. Нахождение процента от величины, величины по ее проценту. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах.
Контрольная работа № 1 по теме «Дроби и проценты»
Раздел 2. Прямая и обратная пропорциональность.
Зависимости между величинами. Представление зависимости между величинами в виде формул. Пропорциональная и обратно пропорциональная зависимости. Пропорция. Решение текстовых задач с помощью пропорций. Пропорциональное деление.
Контрольная работа №2 по теме «Прямая и обратная пропорциональность»
Раздел 3. Введение в алгебру.
Буквенные выражения (выражения с переменными). Законы арифметических действий: переместительный, сочетательный, распределительный. Преобразование буквенных выражений на основе свойств арифметических действий. Раскрытие скобок. Приведение подобных слагаемых
Контрольная работа № 3 по теме «Введение в алгебру»
Раздел 4. Уравнения.
Алгебраический способ решения задач. Уравнение с одной переменной. Корень уравнения. Решение уравнений. Решение текстовых задач алгебраическим способом.
Контрольная работа №4 по теме « Уравнения»
Раздел 5. Координаты и графики.
Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки. Расстояние между точками координатной прямой. Декартовы координаты на плоскости. Графики. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.
Контрольная работа №5 по теме «Координаты и графики»
Раздел 6. Свойства степени с натуральным показателем.
Свойства степени с натуральным показателем. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.
Контрольная работа №6 по теме «Свойства степени с натуральным показателем»
Раздел 7. Многочлены.
Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Решение текстовых задач алгебраическим способом.
Контрольная работа №7 по теме «Многочлены»
Раздел 8. Разложение многочленов на множители.
Вынесение общего множителя за скобки. Разложение многочленов на множители. Формула разности квадратов. Формулы разности и суммы кубов. Решение текстовых задач алгебраическим способом.
Контрольная работа №8 по теме «Разложение многочленов на множители»
Раздел 9. Частота и вероятность.
Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий.
Раздел 10. Итоговое повторение.
Итоговая контрольная работа.
7 класс Геометрия
Раздел 1. Начальные геометрические сведения
Возникновение геометрии из практики. Геометрические фигуры. Равенство в геометрии. Точка, прямая и плоскость. Отрезок, луч. Расстояние. Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла.
Контрольная работа №1 по теме: « Начальные геометрические сведения».
Раздел 2. Треугольники
Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники. Прямая и обратная теоремы, свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам, построение перпендикуляра к прямой, построение биссектрисы угла.
Контрольная работа №2 по теме: « Треугольники».
Раздел 3. Параллельные прямые
Параллельные и пересекающиеся прямые. Определения, доказательства, аксиомы и теоремы, следствия. Перпендикулярность прямых. Контрпример, доказательство от противного. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой.
Контрольная работа №3 по теме: «Параллельные прямые».
Раздел 4. Соотношения между сторонами и углами треугольника
Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинами сторон и углов треугольника. Признаки равенства прямоугольных треугольников. Построение треугольника по трем сторонам.
Контрольная работа №4 по теме: «Соотношения между сторонами и углами треугольника».
Контрольная работа №5 по теме: «Прямоугольные треугольники. Построение треугольника по трём элементам».
Раздел 5. Повторение. Решение задач
Итоговая контрольная работа.
8 класс Алгебра
Повторение курса алгебры 7 класса
Выражения, тождества, уравнения. Функции. Степень с натуральным показателем. Многочлены. Формулы сокращенного умножения. Системы линейных уравнений. Диагностическая контрольная работа.
Раздел 1. Рациональные дроби
Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и её график.
Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.
Контрольная работа №1 по теме : «сложение и вычитание дробей»
При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел. Изучение темы завершается рассмотрением свойств графика функции у =
Контрольная работа №2 по теме: "Операции с дробями. Дробно-рациональная функция"
Раздел 2. Квадратные корни
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , её свойства и график.
В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.
Контрольная работа №3 по теме: "Понятие арифметического квадратного корня и его свойства".
При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.
Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество =
, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида
,
. Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.
Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у= , её свойства и график. При изучении функции у =
, показывается ее взаимосвязь с функцией у = х2, где х ≥ 0.
Контрольная работа №4 по теме «Свойства квадратных корней»
Раздел 3. Квадратные уравнения
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.
Контрольная работа № 5 по теме: «Квадратные уравнения»
Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.
Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач. Контрольная работа № 6 по теме «Дробно-рациональные уравнения. Текстовые задачи»
Раздел 4. Неравенства
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.
Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.
Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.
В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств. Контрольная работа № 7 по теме: «Числовые неравенства и их свойства»
При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах b, ах
В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.
Контрольная работа № 8 по теме: «Неравенства с одной переменной и их системы»
Раздел 5. Степень с целым показателем. Элементы статистики
Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.
В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.
Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.
Контрольная работа № 9 по теме: «Степень с целым показателем и ее свойства»
Повторение
Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.
Контрольная работа № 10 (итоговая)
8 класс
Геометрия
Повторение курса геометрии 7 класса (2 часа)
Глава 5.Четырехугольники (14 часов)
Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.
Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.
Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.
Контрольная работа №1 по теме: «Четырёхугольники»
Глава 6.Площадь (14 часов)
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.
Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.
Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.
Контрольная работа №2 по теме: «Площади»
Глава7. Подобные треугольники (20 часов)
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.
В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.
Контрольная работа № 3 по теме «Подобные треугольники»
Контрольная работа №4 по теме: «Соотношения между сторонами и углами прямоугольного треугольника»
Глава 8. Окружность (18 часов)
Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.
В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.
Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.
Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.
Контрольная работа № 5 по теме: «Окружность»
9. Повторение. Решение задач. (2 часа)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.
9 класс
Алгебра
Квадратичная функция, её свойства и график.
Квадратный трёхчлен. Квадратичная функция, её преобразование с помощью выделения полного квадрата. График функции . Параллельный перенос графика вдоль координатных осей. Построение графика квадратичной функции.
Контрольная работа №1 по теме: «Квадратичная функция».
Неравенства. Системы и совокупности неравенств.
Сравнение чисел. Числовые неравенства и их свойства. Понятие о доказательстве неравенств. Неравенства с переменной. Решение линейных неравенств и их систем. Решение квадратных неравенств. Решение рациональных неравенств методом интервалов. Системы и совокупности рациональных неравенств.
Контрольная работа № 2 по теме: «Неравенства с одной переменной»
Степень с рациональным показателем.
Функция при натуральном n, её свойства и график. Корень степени n, особенности чётных и нечётных n. Арифметический корень. Свойства корней. Степени с рациональными показателями, их свойства. Тождественные преобразования иррациональных выражений.
Системы уравнений.
Системы рациональных уравнений и основные приёмы их решения. Графический метод решения систем уравнений. Решение текстовых задач с помощью систем рациональных уравнений.
Контрольная работа № 3 по теме “Уравнения с одной переменной”
Контрольная работа № 4 по теме: «Уравнения и неравенства с двумя переменными»
Арифметическая и геометрическая прогрессии.
Понятие числовой последовательности. Арифметическая прогрессия, её основные свойства. Геометрическая прогрессия, её основные свойства. Бесконечная геометрическая прогрессия со знаменателем, меньшим по модулю единицы. Решение задач на прогрессии.
Контрольная работа № 5 по теме: «Арифметическая прогрессия»
Контрольная работа № 6 по теме: «Геометрическая прогрессия»
Итоговое повторение.
Итоговая контрольная работа
9 класс
Геометрия
Векторы.
Понятие о векторах. Сумма и разность векторов, умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Скалярное произведение векторов. Векторный метод решения геометрических задач.
Контрольная работа №1 по теме “Векторы”
Контрольная работа №2 по теме: «Метод координат»
Подобие и гомотетия.
Понятие о подобных треугольниках. Признаки подобия треугольников. Теорема о пропорциональных отрезках. Свойства подобных многоугольников. Отношение периметров и площадей подобных многоугольников. Понятие о гомотетии. Свойства гомотетии.
Параллельный перенос.
Определение параллельного переноса. Свойства параллельного переноса. Понятие об орнаментах, бордюрах, паркетах.
Контрольная работа № 3 по теме: “Движение”
Элементы тригонометрии.
Тригонометрические функции острого угла, основные соотношения между ними. Решение прямоугольных треугольников. Тригонометрические функции углов от 0 до 180°.
Метрические соотношения в треугольнике.
Теорема косинусов и теорема синусов. Решение треугольников. Выражение площади треугольника через длины двух сторон и синус угла между ними. Формула Герона.
Контрольная работа № 4 по теме “Соотношение между сторонами и углами треугольника”
Вписанные и описанные многоугольники.
Вписанная и описанная окружность для треугольника. Вписанные и описанные четырёхугольники, их свойства и признаки.
Правильные многоугольники.
Правильные многоугольники, их свойства. Связь между стороной правильного многоугольника и радиусами вписанной и описанной окружностей. Длина окружности. Площадь правильного многоугольника. Площадь круга и его частей.
Контрольная работа №5 по теме: “Длинна окружности и площадь круга”
Итоговое повторение.
Итоговая контрольная работа
3. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА
5 класс
№ п/п | Наименование раздела, темы | Количество часов |
1 | Линии | 7 |
2 | Натуральные числа | 12 |
3 | Действия с натуральными числами | 25 |
4 | Использование свойств действий при вычислениях | 12 |
5 | Многоугольники | 7 |
6 | Делимость чисел | 15 |
7 | Треугольники и четырехугольники | 9 |
8 | Обыкновенные дроби | 20 |
9 | Действия с дробями | 35 |
10 | Многогранники | 10 |
11 | Таблицы и диаграммы | 8 |
12 | Повторение | 15 |
| Итого | 175 |
6 класс
№ п/п | Наименование раздела, темы | Количество часов |
1 | Дроби и проценты | 20 |
2 | Прямые на плоскости и в пространстве | 6 |
3 | Десятичные дроби | 8 |
4 | Действия с десятичными дробями | 32 |
5 | Окружность | 8 |
6 | Отношения и проценты | 16 |
7 | Симметрия | 8 |
8 | Выражения, формулы, уравнения | 15 |
9 | Целые числа | 14 |
10 | Комбинаторика. Случайные события | 8 |
11 | Рациональные числа | 16 |
12 | Многоугольники и многогранники | 9 |
13 | Итоговое повторение курса математики 6 класса. | 15 |
| Итого | 175 |
| Итого математики за 5-6 класс | 350 |
АЛГЕБРА
7 класс
№ п/п | Наименование раздела, темы | Количество часов |
1 | Дроби и проценты | 11 |
2 | Прямая и обратная пропорциональности | 8 |
3 | Введение в алгебру | 8 |
4 | Уравнения | 11 |
5 | Координаты и графики | 12 |
6 | Свойства степени с натуральным показателем | 10 |
7 | Многочлены | 18 |
8 | Разложение многочленов на множители | 16 |
9 | Частота и вероятность | 5 |
9 | Итоговое повторение за курс 7 класса | 6 |
| Итого | 105 |
8 класс
№ | Наименование раздела, темы | Количество часов |
1 | Алгебраические дроби | 17 |
2 | Квадратные корни | 20 |
3 | Квадратные уравнения | 20 |
4 | Системы уравнений | 20 |
5 | Функции | 13 |
6 | Вероятность и статистика | 7 |
7 | Повторение за курс 8 класса | 8 |
| Всего | 105 |
9 класс
№ | Наименование раздела, темы | Количество часов |
1 | Неравенства | 19 |
2 | Квадратичная функция | 20 |
3 | Уравнения и системы уравнений | 25 |
4
| Арифметическая и геометрическая прогрессии | 17
|
5
| Статистика и вероятность, комбинаторика | 6
|
6 | .Резерв. Повторение | 15
|
| Всего | 102 |
| Итого алгебра 7-9 класс | 312 |
Геометрия
7 класс
№ п/п | Наименование раздела, темы | Количество часов |
1 | Начальные геометрические сведения | 11 |
2 | Треугольники | 18 |
3 | Параллельные прямые | 13 |
4 | Соотношения между сторонами и углами треугольника | 20 |
5 | Повторение | 8 |
| Итого | 70 |
8 класс
№ п/п | Наименование раздела, темы | Количество часов |
1 | Повторение курса геометрии 7 класса | 4 |
2 | Четырехугольники | 14 |
3 | Площадь | 14 |
4 | Подобные треугольники | 19 |
5 | Окружность | 17 |
6 | Повторение. | 2 |
| Итого | 70 |
9 класс
№ п/п | Наименование раздела, темы | Количество часов |
1 | Повторение курса геометрии 8 класса | 3 |
2 | Векторы. | 8 |
3 | Метод координат | 10 |
4 | Соотношения между сторонами и углами треугольника. | 11 |
5 | Длина окружности и площадь круга. | 12 |
6 | Движения | 8 |
7 | Начальные сведения из стереометрии | 8 |
| Повторение. | 8 |
| Итого | 68 |
| Итого геометрия 7-9 | 208 |
1
2
3
4
5