СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая учебная программа 10-11 класс по математике 2015-2016

Категория: Математика

Нажмите, чтобы узнать подробности

План:

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ

Содержание обучения

УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Просмотр содержимого документа
«Рабочая учебная программа 10-11 класс по математике 2015-2016»

Муниципальное бюджетное общеобразовательное учреждение

«Мохченская средняя общеобразовательная школа»






СОГЛАСОВАНО

Заместитель директора по УВР __________ / _______________ /

(Подпись) (И.О. Фамилия)


УТВЕРЖДАЮ

Директор __________ /_______________ /

(Подпись) (И.О. Фамилия)


Приказ от______________20__г. №____







РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА



(наименование учебного предмета)


(уровень образования)


(срок реализации программы)

Составлена на основе примерной программы



(наименование программы, автор программы)



кем


(Ф.И.О. учителя или группы учителей, составивших рабочую программу учебного предмета)







ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ

В результате изучения математики на базовом уровне ученик должен:

Знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

  • возможности геометрии для описания свойств реальных предметов и их взаимного расположения;

  • универсальный характер законов логики математических рассуждений; их применимость в различных областях человеческой деятельности;

  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

  • вероятностный характер различных процессов и закономерностей окружающего мира


Алгебра

Числовые и буквенные выражения

Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значение корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;

  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;

  • выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, находить комплексные корни уравнений с действительными коэффициентами;

  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, тригонометрические функции, логарифмы.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.

Функции и графики

У меть:

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций, выполнять преобразования графиков;

  • описывать по графику и по формуле поведение и свойства функций;

  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания и исследования с помощью функций реальных зависимостей, представления их графически.

Начала математического анализа

Уметь:

  • находить сумму бесконечно убывающей геометрической прогрессии;

  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных;

  • исследовать функции и строить их графики с помощью производной;

  • решать задачи с применением уравнения касательной к графику функции;

  • решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

  • вычислять площадь криволинейной трапеции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.

Уравнения и неравенства

Уметь:

  • решать рациональные, показательные, логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

  • доказывать несложные неравенства;

  • решать текстовые задачи с помощью составления уравнений и неравенств, учитывая ограничения в условии задачи;

  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем; находить приближенные решения уравнений и их систем, используя графический метод;

  • решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона ;

  • вычислять вероятности событий на основе подсчета числа исходов (простейшие случаи).

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.


Геометрия

Уметь:

  • соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями и анализировать взаимное расположение фигур;

  • изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;

  • решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;

  • проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;

  • вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;

  • применять координатно-векторный метод для вычисления отношений, расстояний и углов;

  • строить сечения многогранников и изображать сечения тел вращения.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисление длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства.



Содержание обучения


X класс

(6 ч в неделю, всего 216 ч)

Повторение курса 7-9 классов (5 ч)

Числовая функция (7 ч)

Определение числовой функции. Способы ее задания. Свойства функции. Обратная функция и ее график.


Тригонометрическая функция (26 ч)

Числовая окружность. длина дуги единичной окружности. Числовая окружность на координатной плоскости. Синус и косинус. Тангенс и котангенс. Тригонометрические функции числового аргумента. Тригонометрические функции углового аргумента. Формулы приведения. Функция y = sin x, ее свойства и график. Функция y = cos x, ее свойства и график. Периодичность функций y = sin x, y = cos x. Построение графика функции y = m f(x) и y = f(kx) по известному графику функции y = f(x). График гармонического колебания. Функции y = tg x и y = ctg x, их свойства и графики.


Введение в стереометрию (7 ч)

Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.

Основная цель – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, их использование при решении стандартных задач логического характера, а также об изображениях точек, прямых и плоскостей на проекционном чертеже при различном их взаимном расположении в пространстве.


Параллельность прямых и плоскостей (19 ч )

Параллельность прямых, прямой и плоскости. Взаимное расположение прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.

Основная цель – дать учащимся систематические сведения о параллельности прямых и плоскостей в пространстве.

При изучении материала темы следует обратить внимание на часто используемый метод доказательства от противного, знакомый учащимся из курса планиметрии.

Здесь учащиеся знакомятся с различными способами изображения пространственных фигур на плоскости.


Тригонометрические уравнения (15 ч)

Первые представления о решении тригонометрических уравнений. Арккосинус. Решение уравнения cos t = a. Арксинус. Решение уравнения sin t = a. Арктангенс и арккотангенс. Решение уравнений tg x = a, ctg x = a.

Простейшие тригонометрические уравнения. Два метода решения тригонометрических уравнений: введение новой переменной и разложение на множители. Однородные тригонометрические уравнения.


Перпендикулярность прямых и плоскостей (20 ч)

Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей.

Основная цель – дать учащимся систематические сведения о перпендикулярности прямых и плоскостей в пространстве; ввести понятие углов между прямыми и плоскостями, между плоскостями.

В ходе изучения темы обобщаются и систематизируются знания учащихся о перпендикулярности прямых, перпендикуляре и наклонных, известные им из курса планиметрии. Постоянное обращение к знакомому материалу будет способствовать более глубокому усвоению темы.

Постоянное обращение к теоремам, свойствам и признакам курса планиметрии при решении задач по изучаемой теме не только будет способствовать выработке умения решать стереометрические задачи

данной тематики, но и послужит хорошей пропедевтикой к изучению следующих тем курса.


Преобразование тригонометрических выражений (19 ч)

Синус и косинус суммы и разности аргументов. Формулы двойного аргумента. Формулы понижения степени. Преобразование сумм тригонометрических функций в произведение. Преобразование произведений тригонометрических функций в суммы. Преобразование выражения A sin x + B cos x к виду C sin (x + t).


Многогранники (12 ч)

Понятие многогранника. Призма. Пирамида. Правильные многогранники.

Основная цель - дать учащимся систематические сведения об основных видах многогранников.

Учащиеся уже знакомы с такими многогранниками, как тетраэдр и параллелепипед. Теперь предстоит расширить представления о многогранниках и их свойствах. В учебнике нет строгого математического определения многогранника, а приводится лишь некоторое описание, так как строгое определение громоздко и трудно не только для понимания учащихся, но и для его применения.

Изучение многогранников нужно вести на наглядной основе, опираясь на объекты природы, предметы окружающей действительности.

Весь теоретический материал темы относится либо к прямым призмам, либо к правильным призмам и правильным пирамидам. Все теоремы доказываются достаточно просто, результаты могут быть записаны формулами, поэтому в теме много задач вычислительного характера, при решении которых отрабатываются умения учащихся пользоваться сведениями из тригонометрии, формулами площадей, решать задачи с использованием таких понятий как «угол между прямой и плоскостью», «двугранный угол» и др.


Производная (38 ч)

Определение числовой последовательности и способы ее задания. Свойства числовых последовательностей.

Определение предела последовательности. Свойства сходящихся последовательностей. Вычисление пределов последовательностей. Сумма бесконечной геометрической прогрессии.

Предел функции на бесконечности. Предел функции в точке. Приращение аргумента. Приращение функции.

Задачи, приводящие к понятию производной. определение производной. Алгоритм отыскания производной. Формулы дифференцирования. Правила дифференцирования. Дифференцирование функции y = f(kx + m).

Уравнение касательной к графику функции y = f(x).

Применение производной для исследования функций на монотонность и экстремумы. Построение графиков функций. Применение производной для отыскания наибольших и наименьших значений величин.


Векторы в пространстве (11 ч)

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

Основная цель – обобщить изученный в базовой школе материал о векторах на плоскости, дать учащимся систематические сведения о действиях с векторами в пространстве.

Основное внимание следует уделить решению задач, так как при этом учащиеся овладевают векторным методом.


Повторение. Решение задач ( 37 ч)




XI класс

(6 ч в неделю, всего 204 ч)


Повторение курса Х класса (2 ч)


Степени и корни. Степенные функции (20 ч)

Понятие корня n-й степени из действительного числа. Функции у =, их свойства и графики. Свойства корня n-й степени. Преобразование выражений, содержащих радикалы.

Обобщение понятия о показателе степени. Степенные функции, их свойства и графики.


Метод координат в пространстве (17 ч)

Координаты точки и координаты вектора. Скалярное произведение векторов. Движение.

В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии.


Показательная и логарифмическая функции (33 ч)

Показательная функция, ее свойства и график. Показательные уравнения. Показательные неравенства.

Понятие логарифма. Функция у = loga x, ее свойства и график. Свойства логарифмов. Логарифмические уравнения. Логарифмические неравенства. Переход к новому основанию логарифма. Дифференцирование показательной и логарифмической функций.


Цилиндр, конус, шар (15 ч).

Цилиндр. Площадь поверхности цилиндра. Конус. Площадь поверхности конуса. Усеченный конус. Сфера. Шар. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометрических тел.

В ходе знакомства с теоретическим материалом темы значительно развиваются пространственные представления учащихся: круглые тела рассматриваются на примере конкретных геометрических тел, изучается взаимное расположение круглых тел и плоскостей (касательные и секущие плоскости), происходит знакомство с понятиями описанных и вписанных призм и пирамид.

Решается большое количество задач, что позволяет продолжить формирование логических и графических умений.


Первообразная и интеграл (9 ч)

Первообразная. Правила отыскания первообразных. Неопределенный интеграл. Таблица основных неопределенных интегралов.

Задачи, приводящие к понятию определенного интеграла. Понятие определенного интеграла. Формула Ньютона — Лейбница. Вычисление площадей плоских фигур с помощью определенного интеграла.




Объёмы тел (28 ч)

Объём прямоугольного параллелепипеда. Объёмы прямой призмы и цилиндра. Объёмы наклонной призмы, пирамиды и конуса. Объём шара и площадь сферы. Объёмы шарового сегмента, шарового слоя и шарового сектора.

Учебный материал главы в основном должен усваиваться в процессе решения задач


Элементы математической статистики, комбинаторики и теории вероятностей (15 ч)

Статистическая обработка данных. Простейшие вероятностные задачи. Сочетания и размещения. Формула бинома Ньютона.

Случайные события и их вероятности. Использование комбинаторики для подсчета вероятностей. Произведение событий. Вероятность суммы двух событий. Независимость событий. Независимые повторения испытаний. Теорема Бернулли и статистическая устойчивость. Геометрическая вероятность.


Уравнения и неравенства. Системы уравнений и неравенств (24 ч)

Равносильность уравнений. Общие методы решения уравнений: замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x), разложение на множители, введение новой переменной, функционально-графический метод.

Решение неравенств с одной переменной. Равносильность неравенств, системы и совокупности неравенств, иррациональные неравенства, неравенства с модулями.

Уравнения и неравенства с двумя переменными.

Системы уравнений. Уравнения и неравенства с параметрами.


Обобщающее повторение (41ч)







УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс

№ п/п

Наименование разделов и тем

Всего часов

Из них контрольных работ (зачетов)

1

Повторение курса алгебры 7-9 классов

5

-

2

Числовые функции

7

1

3

Тригонометрические функции

26

2

4

Введение в стереометрию

7


5

Параллельность прямых и плоскостей

19

2

6

Тригонометрические уравнения

15

1

7

Перпендикулярность прямых и плоскостей

20

1

8

Преобразование тригонометрических выражений

19

1

9

Многогранники

12

1

10

Производная

38

3

11

Векторы в пространстве

11

1

12

Повторение курса геометрии

7


13

Повторение курса алгебры и начал математического анализа

30

1

Итого:

216

14


11 класс

№ п/п

Наименование разделов и тем

Всего часов

Из них контрольных работ (зачетов)

1.

Повторение курса алгебры и начал математического анализа 10 класса

2

-

2.

Степени и корни. Степенная функция

20

1

3.

Метод координат

17

2

4.

Показательная и логарифмическая функции

33

3

5.

Цилиндр, конус, шар

15

1

6.

Первообразная и интеграл

9

1

7.

Объемы тел

28

2

8.

Элементы комбинаторики, статистики и теории вероятностей

15

1

10.

Уравнения и неравенства. Системы уравнений и неравенств

24

1

11.

Повторение курса математики.

41

1

Итого:

204

13