СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Расчёт числовых характеристик дискретной случайной величины

Категория: Математика

Нажмите, чтобы узнать подробности

РАСЧЁТ ЧИСЛОВЫХ ХАРАКТЕРИСТИК ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ.

(Раздел «Элементы теории вероятностей. Элементы математической статистики.»)

ДЕЯТЕЛЬНОСТНАЯ КАРТА УЧЕБНОГО ЗАНЯТИЯ

Просмотр содержимого документа
«Расчёт числовых характеристик дискретной случайной величины»

РАСЧЁТ ЧИСЛОВЫХ ХАРАКТЕРИСТИК ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ.

(Раздел «Элементы теории вероятностей. Элементы математической статистики.»)


ДЕЯТЕЛЬНОСТНАЯ КАРТА УЧЕБНОГО ЗАНЯТИЯ


Профессии: 15.01.20 Слесарь по контрольно-измерительным приборам и автоматике, 09.01.03 Мастер по обработке цифровой информации, 23.01.03 Автомеханик, 09.01.01 Наладчик аппаратного и программного обеспечения

Учебные группы: КИП-11, М-11, А-11, Н-11

Учебная дисциплина: ООПу.04 Математика

Тема учебного занятия: Расчёт числовых характеристик дискретной случайной величины.

Тип урока: урок «открытия» новых знаний

Вид урока: лекция-беседа

Средства обучения:

  • технические: мультимедийный проектор, персональный компьютер;

  • информационно-коммуникационные: электронная презентация.

Цели урока:

методическая: использование объяснительно-иллюстративного метода обучения с целью формирования математического мышления студентов;

образовательная: создание условий для овладения знаниями о расчёте числовых характеристик дискретной случайной величины;

развивающая: развитие умений планировать, анализировать, выдвигать гипотезы по решению заданий, применять полученные знания для выполнения упражнений;

воспитательная: воспитание интереса к изучению математики, математической культуры студентов.

Прогнозируемые результаты:

1) предметные:

  • сформированность знаний о расчёте числовых характеристик дискретной случайной величины;

  • владение умением решать задачи на расчётах числовых характеристик дискретной случайной величины;

2) метапредметные:

  • регулятивные:

  • умение ставить перед собой цель, видеть ожидаемый результат работы;

  • умение рационально распределять рабочее время;

  • умение объективно оценивать свои возможности, анализировать свои результаты, корректировать свои действия;

  • владение навыками познавательной рефлексии;

  • познавательные:

  • умение осуществлять поиск и отбор необходимой информации;

  • умение сопоставлять и анализировать, выделять в тексте базовые и вспомогательные концепты, опорные понятия, тезисы, структурировать их взаимосвязь;

  • умение структурировать полученную информацию;

  • умение анализировать и обобщать информацию;

  • коммуникативные:

  • умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности;

  • умение выражать свои мысли с достаточной полнотой и точностью.

Образовательные технологии: традиционное обучение.

Формы организации обучения: фронтальная, индивидуальная.

Методы обучения и контроля:

  • вербальные: беседа;

  • практические: метод сравнения, метод анализа и структурирования.

  • методы контроля и самоконтроля: устный контроль, самоконтроль.


Нормативный документ

Федеральный государственный образовательный стандарт среднего общего образования (утв. приказом Министерства образования и науки Российской Федерации (Минобрнауки России) от 17 мая 2012 г. № 413 г.). – М.: Министерство образования и науки РФ, – 2012.


Образовательные ресурсы:

Основная литература

  1. Башмаков М. И. Математика: учебник для студ. учреждений сред. проф. образования. − М.: Издательский центр «Академия», 2018. – 256 с.

  2. Башмаков М. И. Математика. Сборник задач профильной направленности: учеб. пособие для студ. учреждений сред. проф. образования. − М.: Издательский центр «Академия», 2014. – 416 с.

Дополнительная литература

  1. Алимов Ш.А., Колягин Ю.М. Алгебра и начала математического анализа (базовый и углубленный уровни).10—11 классы. Учебник. − М.: Просвещение, 2014. – 464 с.

  2. Атанасян Л.С. Геометрия. 10 − 11 классы: учебник для общеобразовательных учреждений: базовый и профильный уровни / Атанасян Л.С., Бутузов В.Ф. и др. – М.: Просвещение, 2013. – 255 с.

  3. Богомолов Н.В. Практические занятия по математике: Учеб. пособие для техникумов / Н.В. Богомолов. – М.: Высш. шк., 2013. – 495 с.

  4. Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика (Книга 1): Учебное пособие. – М.: Издательство «Новая волна», 2013. – 656 с.

  5. Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика (Книга 2): Учебное пособие. – М.: Издательство «Новая волна», 2013. – 592 с.

  6. Никольский С.М. Алгебра и начала анализа: учебник для 10 класса общеобразоват. учреждений: базовый и профильный уровни / С.М. Никольский, М.К. Потапов. – М.: Просвещение, 2013. – 430 с.

  7. Никольский С.М. Алгебра и начала анализа: учебник для 11 класса общеобразоват. учреждений: базовый и профильный уровни / С.М. Никольский, М.К. Потапов. – М.: Просвещение, 2013. – 464 с.


Интернет-ресурсы:

  1. Федеральный центр информационно-образовательных ресурсов [Электронный ресурс] URL: www. fcior. edu. ru

  2. Единая коллекции цифровых образовательных ресурсов [Электронный ресурс] URL: www. school-collection. edu. ru


Научно-методические ресурсы:

  1. Инновационные педагогические технологии: учебное пособие/ Михелькевич В.Н., Нестеренко В.М., Кравцова П.Г. – Самар. гос. тех. ун-т Самара, 2001. – 89 с.

  2. Кульневич С.В., Лакоценина Т.П. Современный урок. Часть 1: Научно-практич. пособие для учителей, методистов, руководителей учебных заведений, студентов пед. заведений, слушателей ИПК. – Ростов н/Д: Учитель, 2005. – 288 с.

  3. Кульневич С.В., Лакоценина Т.П. Современный урок. Часть 3: Научно-практич. пособие для учителей, методистов, руководителей учебных заведений, студентов пед. заведений, слушателей ИПК. – Ростов н/Д: Учитель, 2007. – 288 с.

  4. Махмутов М.И. Проблемное обучение: Основные вопросы теории. – М.: Педагогика, 1975. – 368 с.


Основные термины и понятия: числовые характеристики дискретной случайной величины.




ПЛАН УЧЕБНОГО ЗАНЯТИЯ


Содержание учебного материала:

1) Сформированность знаний о расчёте числовых характеристик дискретной случайной величины.

2) Закрепление теоретического материала по теме с помощью решения упражнений.


  1. Этап мотивации (самоопределения) к учебной деятельности (2 мин)

Преподаватель приветствует студентов, создает деловую обстановку, настраивает на продуктивную мыслительную деятельность.

  1. Этап актуализации опорных знаний. Целеполагание (15 мин)

Преподаватель задает вопросы студентам:

  1. Какие вы знаете числовые характеристики дискретных случайных величин?

Студенты отвечают на эти вопросы, вспоминая знания, полученные на предыдущем занятии.

Формулирование темы и целей учебного занятия.

  1. Работа над новой темой («открытие» нового знания) (48 мин)

Алгоритм работы над «открытием» нового знания:

Формулирование преподавателем определений расчёта числовых характеристик дискретной случайной величины.

Теория

1) Математическое ожидание М(Х) дискретной случайной величины Х это сумма произведений всех возможных значений величины Х на соответствующие вероятности:

.

Свойства математического ожидания:

Математическое ожидание имеет ту же размерность, что и сама случайная величина.

Математическое ожидание может быть как положительным, так и отрицательным числом.

Математическое ожидание постоянной величины С равно этой постоянной. М (С) = С.

Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий этих величин.

М (X + Y + . . . + W) = М (X) + М (Y) + . . . + М (W).

Математическое ожидание произведения двух или нескольких взаимно независимых случайных величин равно произведению математических ожиданий этих величин.

М (XY) = M(X) × M(Y).

Постоянный множитель можно выносить за знак математического ожидания:

М(СХ) = С× М(Х).

2) Дисперсия D(X) дискретной случайной величины Х – это математическое ожидание квадрата отклонения случайной величины Х от ее математического ожидания:

Формула после возведения в степень и преобразований имеет вид:

Свойства дисперсии:

Дисперсия имеет размерность, равную квадрату размерности случайной величины.

Дисперсия постоянной величины всегда равна нулю: D (С) = 0.

Постоянный множитель можно выносить за знак дисперсии, предварительно возведя его в квадрат: .

Дисперсия алгебраической суммы двух независимых случайных величин равна сумме их дисперсией: D(X +Y) = D(X) + D(Y).

3) Среднее квадратическое отклонение s(Х) дискретной случайной величины Х определяется формулой. Среднее квадратическое отклонение имеет ту же размерность, что и случайная величина.

Случайная величина называется центрированной, если математическое ожидание M(X)=0, и стандартизированной, если M(X)=0 и среднее квадратическое отклонение s = 1.

Рассмотрим на примере вычисление числовых характеристик дискретных случайных величин.

  1. Включение нового знания в систему имеющихся знаний (20 мин)

Найти математическое ожидание М (Х), дисперсию D(Х) и среднее квадратическое отклонение s(Х) дискретной случайной величины Х, заданной законом распределения в таблице

Х

-5

2

3

4

р

0,4

0,3

0,1

0,2

 

Решение. Математическое ожидание Х вычисляется по формуле:

Дисперсия вычисляется по формуле: .

Закон распределения квадрата Х² случайной величины задан в таблице.

Х²

25

4

9

16

р

0,4

0,3

0,1

0,2

Математическое ожидание Х²:

.

Искомая дисперсия:

.

Тогда среднее квадратическое отклонение будет: 

  1. Рефлексия. Подведение итогов учебного занятия (5 мин)

Беседа со студентами по содержанию занятия. Вопросы для беседы:

  1. Какая была тема сегодняшнего занятия?

  2. Что нового вы узнали?

  3. Какая была цель занятия?

  4. Что получилось у вас сегодня?

  5. Что не получилось?

  6. Достигли ли мы поставленной цели?

  7. Инструктирование о выполнении домашнего задания

Изучить [1] гл. 11 занятие 3