Равносильные уравнения и неравенства
Перечень вопросов, рассматриваемых в теме
1) понятие равносильного уравнения;
2) понятие равносильного неравенства;
3) понятие уравнения-следствия;
4) основные теоремы равносильности.
Глоссарий по теме
Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.
Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.
Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.
Теоретический материал для самостоятельного изучения
Определение. Два уравнения с одной переменной
f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.
Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.
Примеры
1) Уравнения
равносильны, т.к. каждое из них имеет только один корень х=3.
2) Уравнения
также равносильны, т.к. у них одни и те же корни
.
3) А вот уравнения
не равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.
Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.
Реализация этого плана связана с поисками ответов на четыре вопроса.
Из определения и определения равносильности уравнений следует, что:
если два уравнения равносильны, то каждое из них является следствием другого;
если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.
При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.
Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.
Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:
Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения
f(х)и g(х).
Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.
Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.
Краткая запись теорем
4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0
и h(x) имеет смысл в ОДЗ данного уравнения.
5. f(x) = g(x) ⇔
, где f(x)≥0, g(x)≥0
и n=2k (чётное число).
Например, х – 1 = 3; х = 4
Умножим обе части на (х – 2):
(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!
Равносильность неравенств с неизвестным определяется аналогично.
Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.
Разбор решения заданий тренировочного модуля
Пример 1.Решим уравнение:
Возведем в квадрат обе части уравнения, получим:
, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня
, а у первоначального уравнения только один корень х=4.