СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Разработка урока алгебры в 9-м классе по теме "Геометрическая прогрессия"

Категория: Математика

Нажмите, чтобы узнать подробности

План урока по алгебре. Геометрическая прогрессия.

Просмотр содержимого документа
«Разработка урока алгебры в 9-м классе по теме "Геометрическая прогрессия"»

Разработка урока алгебры в 9-м классе по теме

"Геометрическая прогрессия"


Албогачиева Радима Руслановна/учитель математики и информатики


Дата_____________________________________________________________


Цели урока:

Образовательная: ввести понятие геометрической прогрессии, познакомить учащихся с формулой n-ого члена геометрической прогрессии, сформировать навыки решения элементарных заданий по данной теме.

Развивающая: развитие памяти, внимания.

Воспитательная: воспитание ответственности, самостоятельности, навыков коллективной работы.


Тип урока: объяснение нового материала.

План урока

1. Сообщение темы и цели урока.

2. Объяснение нового материала.

3. Решение задач

4. Домашнее задание.

Оборудование: компьютер, интерактивная доска, презентация «Геометрическая прогрессия», учебник Алгебра для 9 класса, Макарычев___________________________________________


ХОД УРОКА

1. Сообщение темы и цели урока

Тема сегодняшнего урока «Геометрическая прогрессия». На уроке мы должны познакомиться с геометрической прогрессией, с формулой n-ого члена геометрической прогрессии, и рассмотреть решение некоторых элементарных задач по данной теме.


2. Объяснение нового материала


Рассмотрим последовательности:

а) 2; 4; 8; 16; 32; 64; …

б) 2; 6; 18; 54; 162…

в) – 10; 100; – 1000; 10000; – 100000…



– Итак, что вы замечаете?

а)

а1 = 2

а2 = 4

а3 = 8

а4 = 16

– Как взаимосвязаны между собой члены этой последовательности?

  • Каждый последующий член последовательности равен предыдущему члену, умноженному на 2.

б)

а1 = 2

а2 = 6

а3 = 18

а4 = 54

– Как взаимосвязаны между собой члены этой последовательности?

– Каждый последующий член последовательности равен предыдущему члену, умноженному на 3.

в)

а1 = – 10

а2 = 100

а3 = – 1000

а4 = 10000

– Как взаимосвязаны между собой члены этой последовательности?

– Каждый последующий член последовательности равен предыдущему члену, умноженному на – 10.


– Рассмотренные последовательности называются геометрическими прогрессиями.

А теперь постараемся самостоятельно сформулировать определение геометрической прогрессии.

Определение. Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.

Иначе, последовательность (вn) – геометрическая прогрессия, если для любого натурального n выполняется условие


Вn = 0 и вn + 1 = bn * q,

где q =.

Число q называют знаменателем геометрической прогрессии.

Зная первый член и знаменатель геометрической прогрессии, можно найти последовательно второй, третий и вообще любой её член:




Мы получили формулу n-ого члена геометрической прогрессии.


3. Решение задач

Итак, рассмотрим примеры решения некоторых задач с использованием этой формулы.

Пример 1.

– Выберите из последовательностей геометрические прогрессии.

А) 3; 6; 9; 12…

Б) 5; 5; 5; …

В) 1; 2; 4; 8; 16;

Г) – 2; 2; – 2; 2…

Пример 2.

В геометрической прогрессии в1 = 13, 4 и q = 0,2. Найти в6.

Решение.

По формуле n-го члена геометрической прогрессии: В6 = 13,4 * (0,2)5 = 13,4 * 0,00032 = 0,004288.

Пример 3.

Найти пятый член геометрической прогрессии: 2; – 6…

Зная первый и второй члены геометрической прогрессии, можно найти её знаменатель.

q = – 6 : 2 = – 3.

Таким образом в5 = 2 * (–3) 4 = 162.


Работа с учебником.

№ 387(а, б), № 388(а, б), № 389(а, б), № 391 (а, б).

_____________________________________________________

  1. Домашнее задание

П.8, № 396, № 400.


5. Итоги урока. По учебнику Макарычева.