При изучении обратной пропорциональной зависимости и дробно-линейной функции мы впервые столкнулись с тем, что графики этих функций имеют очень интересное свойство: при некоторых значениях х и у они не пересекаются с осями координат или с прямыми, параллельными осям координат. Но в действующих школьных учебных пособиях недостаточно теоретического и практического материала по обозначенной теме, рассматривается вопрос только об асимптотах дробно-линейной функции, ничего не говорится о том, существуют ли еще какие-либо функции, имеющие асимптоты, что явно недостаточно для исследования и построения графиков дробно-рациональных функций.
Актуальность работы:
Исследование асимптот позволяет более четко представить поведение графика функции, поскольку свойства функции вблизи ее асимптоты очень близки к свойствам асимптоты (прямой) или асимптотической кривой (параболы или гиперболы), свойства которых хорошо изучены. Систематическое использование этого факта породило целое направление в современной математике – «асимптотические методы исследования». Таким образом, понятие, возникшее в Древней Греции, переживает в наше время второе рождение.
Проблемный вопрос:
Нельзя ли с первого взгляда определить, какие асимптоты имеют график и сколько их, можно ли найти уравнения асимптот элементарными методами?
Цель:
Выявить, какие асимптоты имеют графики дробно-рациональной, показательной, логарифмической функции; установить уравнения асимптот элементарными методами.
Задачи:
1. Узнать, что такое асимптота?
2. Определить наличие и вид асимптот у графиков вышеуказанных функций;
3.Определить геометрический смысл асимптоты;
4. Использовать изученный нами материал при подготовке к ЕГЭ.