СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Санарип сабактын иштелмеси

Категория: Математика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Санарип сабактын иштелмеси»

Жалал-Абад областынын Ала-Бука районундагы

Төрөгелди Балтагулов атындагы жалпы орто билим берүүчү мектеби



Математика мугалими Нармирзаева Нургуль Ташболотовна




Негизги компетенттүүлүктөр:

1.Маалыматтык компетенттүүлүк.

2. Социалдык- коммуникативдик компетенттүүлүк.

3. Өзүн-өзү уюштуруу жана көйгөйлөрдү чечүү компетенттүүлүк



Предметтик компоненттүүлүк:

Математикалык жаңы маалыматтарды таанып билүү, аны колдонуу жана элементи менен жаза билүү компоненттүүлүгү.

Математикалык түшүнүгүн тереңдетүү жана бышыктоо компоненттүүлүгү.

Математикалык көндүмдөрдү талдоо.

Жашоо тиричилик менен байланыштыруу


Сабактын темасы: Пифагордун теоремасы - геометриянын казыналарынын бири


Сабактын максаттары:


Күтүлүүчү натыйжалар


1.Билим берүүчүлүк: - Тик бурчтуу үч бурчтуктун жактарынын ортосундагы байланыштар, алардын касиеттери, фигуралардын аянты, алардын касиеттери, Пифагордун теоремасын жана далилдөөсүн, тик бурчтуктун жактарынын ортосундагы көз карандылыктарды үйрөнөт;


Тик бурчтуу үч бурчтукту түзө алса жана фигуралардын касиеттерин билсе, жактарынын ортосундагы байланыштарды көрсөтсө, айрымалап тааныса;

Аларды салыштырса жана талдай алса тик бурчтуктун аныктамасын, негизги элементтерин жана жактарынын аталыштарын билсе;

Берилген фигуралардын аянттарын табуу үчүн формулаларды колдонсо;

Пифагордун теоремасын билсе жана колдонсо; Пифагордун теоремасын жана далилдөөсүн, тик бурчтуктун жактарынын ортосундагы көз карандылыктарды үйрөнсө.


2. Өнүктүрүүчүлүк: Берилген теореманы көнүгүү иштөөдө колдонуу менен практикалык көндүмдөрүн өстүрүшөт.Теореманы турмуштук зарылчылыктарга колдонууну билсе, каалаган фигуранын элементтерин табууга колдоно алат.

3. Тарбия берүүчүлүк: Окуу эмгегине карата жоопкерчиликтүү мамиле кылууга, ынтымактуу иштөөгө үйрөнүшөт. Жоопкерчилик менен иштөөгө, топто бири биринин пикирин пикирин угуп жана сыйлай билүүгө тарбияланышат.







Сабактын тиби:

аралаш жана мелдеш

Сабактын формасы

өз алдынча, топтордо иштөө, практикалык, изилдөө,

Колдонуучу методдор жана ыкмалар

көрсөтмөлүүлүк, түшүндүрүү, айтып берүү, өз алдынча, жупта, топтордо иштөө ыкмалары, долборлоо жана изилдөө технологиясы, маалыматтык-коммуникациялык технологиялары

Сабактын жабдылышы

окуу китеби, иш дептери, проектор, экран, слайддар, презентациялар, видео,квадрат жана тик бурчтуу үч бурчтуктун моделдери,ватман,маркер,Пифагордун портрети ж.б.


Методикалык максаты:

Билим берүү жана предметтик стандарттарды эске алуу менен салттуу эмес сабак

Методикалык максатка жетүүнүн каражаттары:

Биргелешип максат коюу, сабакты пландаштыруу, көз карандысыз баалоо иш-чаралары, көйгөйлүү кырдаал, тапшырмаларды жеке, жупта жана топто чагылдыруу

Калыптануучу универсалдуу окуу иш-чаралары

Когнитивдик

  • көйгөйдү түзүү

  • өз алдынча маселелерди чечүү жолдорун түзүү

  • маалыматтардын маанисин түшүнүү
    обьектти изилдөө , салыштыруу, себеп-натыйжа байланыштарын түзүү, тиешелүү тыянактарды чыгаруу.

  • алгоритмди колдонуу менен тема боюнча маселе чечүү

Күнүмдүк

  • максат коюу

  • пландаштыруу

  • сабак учурундагы иш-аракеттерди баалоо

Жеке

  • · адамдык сапаттагы өзүн-өзү сыйлоо сезимин өнүктүрүү

  • сабакка болгон таанып билүү кызыкчылыктарын

  • өз ара жардамдашуу

Коммуникативдик

· өз пикирин билдирүү жана түшүндүрүп негиздөө ;
· сүйлөшүүлөрдү жүргүзүү жана жалпы чечимге келүү жөндөмдүүлүгү, презентациялоо, импровизациялоо жөндөмдүүлүгү, өз пикирин ачык жана так билдирүү



Сабактын жүрүшү


I Бөлүм

Сабакты ачуу жана киришүү

Мотивациялык жана ойду топтоо баскычы









































Оперативдүү-маалыматтык


  1. мазмунун аныктоо;

  2. Коммуникативдик өз ара аракеттенүүнү уюштуруу.

  3. Сабакты Окуу ишмердүүлүгүнө тартуу;

  1. Сабактын уюштуруу учуру. 3 мүн

Мотивация (концентрацияны, эс тутумду, көңүл бурууну топтоо үчүн)

колуңузду чиймелер боюнча жылдырбай, параллель сызыктардын санын эсептеп көрүңүз, канча 12)

- Саламатсыңарбы балдар, отургула! Балдар силер менен геометрия сабагында кайрадан жолукканыма абдан кубанычтамын.Бүгүнкү сабагыбыз эң кызыктуу жана ийгиликтүү өтөт деп ишенимдүү түрдө айта аламын.Балдар келгиле,сабагыбыз кызыктуу өтүш үчүн геометрия жөнүндө сүйлөшөбүз. Геометрия илими эмнени үйрөтөт? (4 окуучу жооп берет) (Геометрия – тегиздиктеги жана мейкиндиктеги фигуралардын касиеттерин иликтеп үйрөнүүчү математиканын бөлүгү.Геометрия термини латын тилинде «гео» – жер, «метрия» – ченеймин )

Сабакты баштоодон мурун Алтын эрежени түзүп алалы.

Алтын эреже:

  • Бири-бирибизге колдоо, жардам көрсөтүү

  • Берилген суроо-тапшырмаларга биргелешип,акылдашып, кеңешип жооп беребиз

  • Бүгүнкү сабактан өзүбүз үчүн кызыктуу пайдалуу,жаңы маалыматтарды кабыл алабыз

  • Кандай жагдай болбосун, шарт болбосун көңүлүңөрдүн ачык, жайдары болушун баарыңарга каалап кетем

Бүгүнкү сабактын эпиграфы немец математиги

Иоганнес Кеплердин сөзү менен башталмакчы:


«…Геометриянын эки казынасы бар, алардын бири - Пифагордун теоремасы …»

Балдар сабакты баштайбыз.Геометриялык фигуралардан өзүңөргө жаккан фигураларды тандап , 4 топко бөлүнүп, орун алабыз.

Ар бириңерге “баалоо баракча” беремин, ага тапшырмаларды туура же туура эмес аткаргандыгыңар тууралуу балл коюп, таблицаны толтуруп сабактын жыйынтыгында тапшырасыңар.

(тик бурчтук, квадрат, тик бурчтуу үч бурчтук, тең капталдуу үч бурчтук окуучулардын ою күнүмдүк турмушта, курчап турган чөйрөдөн каерден көрө аласыңар)


2) Тарыхый маалыматтар. «Пифагор» тууралуу кыска фильм (2 мүн.)

(сүйлөбөй видео коем)

- Пифагор деген ким болгон? ............ ( ар бир топтон сурайм)

****************

-Демек, Пифагор ким? Геометриядагы негизги теорема эмне деп аталат?

– Сабагыбыздын темасы: « Пифагордун теоремасы». Дептериңерди ачып бүгүнкү числону жана жаңы теманы жазгыла.

- Айткылачы , бул Пифагордун теоремасы жөнүндө эмне билесиңер?

Бу теорема боюнча силерге эмне тааныш ?

- Бул тема боюнча дагы эмнени билгиңер келет?

3) Сабактын планын түзүү.

Теореманын айтылышы жана далилдөөсү

Теореманы колдонуу

Теореманы колдонуп турмуштук кырдаалдагы маселелерди чыгаруу

4) Негизги билимдерди жаңылоо.

Бирок жаңы теманы үйрөнүүдөн мурун, өтүлгөн темаларды эске түшүрөлү

Тапшырма 1. "Тик бурчтук”, “тик бурчтуу үч бурчтук", “квадрат” тууралуу билимин долбоорлоп, коргошот. (топто иштөө) – Бул фигуралар жөнүндө эмне билесиңер? Бизди курчап турган чөйрөдө кездешкен бул фигураларга окшош предметтерди атагыла, чиймесин көрсөткүлө. (3 мүн.)

- Тик бурчтуу үч бурчтук жөнүндө баарыбыз билебиз деп ойлойсузбу?

- Бул тапшырмаларды аткарып көрөлүчү

Тапшырма 2. - Доскада кандай геометриялык фигура көрсөтүлгөн? . (слайд)

 ABC-тик бурчтуу үч бурчтук

 ∠�=90∘∠C=90∘,жана AC=3смBC=4.  AB –жагынын узундугун тапкыла

-Бул кандай үч бурчтук?

Тик бурчтук деген эмне?Жактары кандай аталат?(гипотенуза,катет)

Кайсы бурчтары тар жана тик?

- Кайсы жактары белгилүү?

- Эмнени табыш керек?

2) Сабактын окуу көйгөйүнүн билдирүүсү

- Биз мындан да терең анализдейбиз.

- Бул биздин сабактын максаты болот.


II Бөлүм

Окуучуларда жаңы түшүнүктү калыптандыруу

Көзөмөл- жөнгө салуучу



II. Оперативдүү-когнитивдик этап.

1) Пифагор теоремасынын ачылышы. Изилдөө иш-аракеттери. (Жуп болуп иштөө)

Маселени чыгаруу : Окуучулардан жупташып кичи топтордо иштөөсүн сураңыз.Алдын ала чакмак кагаз барактарын даярдап коюңуз, бир чакмак бир квадраттык сантиметрге барабар экенин билдириңиз.(4-5 мүн.)

  • Берилген фигуралардын аянтын тапкыла жана эки кичинесинин аянттарынын суммасын чоңунун аянтын салыштыргыла. .(чакмактын жагы 1см), бул кандай фигура

  • Бул фигуралардан тик бурчтуу үч бурчтукту түзгүлө.

а=8 , b=6 c=10 S=a*a=8*8=64, S=b*b=6*6=36 S=c*c=10*10=100

64+36=100



  • Окуучуларга фигуралардын аянтын табууга жана тик бурчтуу үч бурчтукту түзүүгө жардам берүү үчүн өзүңүздүн кадамдарыңызды атап жана иш-аракетиңизди көрсөтүңүз

  • Фигуралардын жактарынын жардамы аркылуу аянтын табуунун формуласын пайдаланабыз .Формула кандай эле?

  • Чоң фигуранын аянтын кичине фигуралардын аянттарынын суммасы менен салыштырабыз

Ушул фигуралардан тик бурчтуу үч бурчтукту түзүп, баракка жармаштыргыла.


  • Мугалимге кеңеш: Окуучуларда карандаш, сызгыч,калың чакмак кагаздан жасалган фигуралар бар болушун көзөмөлдөө керек.(чакмактын жагы 1см)


  • Талкулоо:бир нече окуучудан жооптору менен бөлүшүүсүн жана ар бири өздөрүнүн ой жүгүртүү жолун түшүндүрүп берүүсүн сураныңыз.



  • Багыттоочу суроолор:



-Силер кандай жоопту алдыңар?

-Силер кантип фигуралардын жактары аркылуу фигура түздүңөр?

-Фигуралардын аянттарын кантип тапканыңарды түшүндүрүп бере аласыңарбы?

-Маселенин чыгарылышынын башка ыкмасы менен ким бөлүшө алат?

Карама-каршы пикир жаратуу:

  • Окуучуга башка паралель класстын окуучусунун жообу төмөндөгүдөй болду.Эки кичине квадраттын аянтынын суммасы чоң квадраттын аянтынан чоң болот.

Р=8*4=32 Р=6*4=24 Р=10*4=40 32+24 40

Ал фигураларды түзүп, аянтын эмес бардык жактарын кошуу менен периметрин таап, эки кичине фигураны чоң фигура менен салыштырган.

Окуучудан сураңыз:

  • Силер аны менен макулсуңарбы же макул эмессиңерби?

  • Эмне үчун ушундай жооп алды?

  • Бул окуучуга анын жообу туура эмес экенин кантип түшүндүрөт элеңер?

Окуучунун тапшырмасын доскага илинет, талкууланат

Моделдештирүү жана жыйынтыктоо:

Жыйынтыктаңыз, маселе кандай чыгарылгандыгына көңүл буруңуз.

1-далилдөө жолу


Тик бурчтуу үч бурчтуктун биринчи катетине жактарынын узундугу 4 бирдик квадратка барабар болгон квадрат түзөбүз, экинчи катетине да жактарынын узундугу 3 бирдик квадратка барабар болгон квадрат тургузабыз жана гипотенузага да анын узундугуна барабар квадрат түзөбүз.

Жактары а га барабар болгон квадраттын аянтын S1 = а2 =4*4=16

Жактары в га барабар болгон квадраттын аянтын S2 = b 2 =3*3=9

Жактары с га барабар болгон квадраттын аянтын S3 = с 2 =5*5=25

S3= S1+ S2=16+9=25 демек c² = a² + b².


2-далилдөө жолу

Бул сүрөттө с- гипотенуза, а жана b –катеттер.Үч бурчтуктун тик бурчунан гипотенузага перпендикуляр түз сызык жүргүзөбүз. Ошентип баштапкы чоң С тик бурчтуу үч бурчтугунун ичинде А жана В эки жаңы тик бурчтуу үч бурчтуктары пайда болду. Баштапкы үч бурчтуктун (С)аянты эки жаңы кичинелердин суммасына барабар.

С = А + B

“Пифагор шымын” 3 окшош фигурага бөлөбүз.

Бардык 3 үч бурчтук бири-бирине окшош жана ушундан улам "үй фигуралары" да окшош. Демек А жана а2 аянтынын катышы B жана b 2, C жана с 2 аянтынын катышы менен бир дей катышат. Башкача айтканда = = = β катышты грек тамгасы менен белгилейбиз β .

Квадраттардын ар биринин аянты аркылуу ар бир үч бурчтуктун аянты төмөнкүгө барабар A = βa², B = βb², C = βc²;

Бул формула эсибизде С = А + B, т. е. βc² = βa² + βb², c² = a² + b².

3-далилдөө жолу (Евклиддин далилдөөсү)












с













с 2= а2+ b 2

Катеттерге тургузулган квадраттар 2 барабар үч бурчтуктан турат.Ал эми гипотенуза түзүлгөн квадрат ушундай 4 үч бурчтуктан турат.Пифагор теоремасы биринчи жолу тең капталдуу тик бурчтуу үч бурчтук үчүн берилген. С (гипотенузага түзүлгөн квадраттын аянты а жана b (катеттерге) түзүлгөн квадраттардын аянттарынын суммасына барабар.

Демек , Пифагордун теоремасы- тик бурчтуу үч бурчтуктун гипотенузасынын квадраты катеттердин квадраттарынын суммасына барабар. с 2= а2+ b 2

Пифагордун теоремасын күнүмдүк жашоодо колдонуу

Силерге суроо Пифагордун теоремасы бизди курчап турган чөйрөдө кантип жана каерде колдонууга болот? Силер кандай ойлойсуңар? Ой-жүгүртөлү...

Пифагордун теоремасын күнүмдүк турмушта жер тилкесинин периметрин, аянтын табууда, спортто биатлонисттер,өрт өчүрүүдө, аянтын табууда, курулушта, астрономияда, мобилдик байланышта (слайд)

Практикалык иш : ( сүрөтүн тартып,)

Жогорку деңгээл: R=200 км радиуста байланыш кабыл алынышы үчүн мобилдик оператордун антеннасынын максималдуу бийиктиги канча болуш керек.(жердин радиусу 6380 км ге барабар)

Чыгарылышы:

В АВ=х, ВС= R=200 км ОС=r

АХА С ОВ=ОА+АВ ОВ=r+ х



Туура келген деңгээл: Үйдүн бийиктиги 3 м. Андан 8 м аралыкта бийиктиги 9 м болгон мамы(столба) бар.Мамыдан үйгө зым тартылган.Зымдын узундугун тапкыла. Чыгарылышы:

B

9 м E C

3 м A D

8 м

Чыгарылышы: BC2= CE2+ ЕB2

BC2 =82 + (9-3)2

BC2=64+36

BC=10

Төмөнүрөөк деңгээл

Мышыктын баласы даракка тыгылып калган. Чыркырап жардам сурады, ооба , бул жерде маселе : өрт өчүрүүчү өз тепкичтерин даракка 6 метрден жакындата албайт. Дарактын бийиктиги 8 метрди түзөт. Өрт өчүргүч тепкичти 11 метрден ашык эмес керип алат. Сиз мышыктын баласын сактап калуу үчүн ушулар жетиштүү деп ойлойсузбу?



с 2= а2+ b 2= 82+ 6 2=

Туура келген деңгээл: №2-көнүгүү Погорелов


1-вариант

Катет а

Катет в

Гипотенуза с

1

3

4

с=

2

1

1

с =

3

5

6

с =







“Бир эле учурда тейбл раунду" - бул түзүм, анда командада 4 катышуучу бир убакта өз алдынча иш аткарат жана убакыт бүткөндөн кийин текшерүү үчүн бири-бирине тегерек боюнча өткөрүп берет.

Эталон боюнча текшерүү.

- Дептерлерди алмаштыруу.

- Слайдды карап, чечимди текшерип, баа бериңиз.


III Бөлүм

Окутуунун жыйынтыктарын баалоо

Рефлекциялык-баалоочу

Ыкчам текшерүү / формалдуу эмес калыптандыруучу баалоо

Таркатмага Тик бурчтуу үч бурчтуктар ,алардын ортосундагы байланыш, фигуралардын аянттары, Пифагордун теоремасы, турмушта колдонулушу тууралуу мини тесттик тапшырма жазышат же китеп боюнча маселе берем.

Өтүлгөн теманы бышыктоо максатында тестти телефондо аткарып жыйынтыгын экрандан көрсөтөм. Googlt test приложениеси менен текшерүү(3 мүн.)

1.Пифагордун теоремасы кандай үч бурчтуктар үчүн колдонулат?

а) бардык б) жактары барабар в) тең капталдуу г) тик бурчтуктуу

2.Тик бурчтуу үч бурчтукта гипотенузанын квадраты...

а) катеттердин суммасына б) катеттердин квадраттарына в) катеттердин квадраттарынын суммасына г)катеттердин көбөйтүндүсүнө

3.Гипотенуза -13 см, катет-5 см.Экинчи катеттин узундугу канча?

а) 12 см б) 13 см в) 14 см г)15 см

4.Пифагордун теоремасынын формуласы жана аны далилдөөнүн канча жолу бар7

а) с 2= а2+ b 2 б) P = 2(а+ b) в) s = а* b г) s = а 2

5.) а=5 , с=13 , в=?

а) 12 см б) 13 см в) 14 см г)15 см

6). а=3 , с=5 , в=?

а) 2 см б) 3 см в) 4 см г )5 см

Рефлекциялык- баалоо баскычы

Балдар бүгүнкү сабагыбызда кандай максат койгонбуз? Максатыбызга жеттик деп ойлой алабызбы?

Тик бурчтуу үч бурчтуктун жактарынын ортосундагы байланыштар, алардын касиеттери, фигуралардын аянты, алардын касиеттери, Пифагордун теоремасын жана далилдөөсүн, тик бурчтуктун жактарынын ортосундагы көз карандылыктарды үйрөнөт;

Теореманы турмуштук зарылчылыктарга колдонууну билсе, каалаган фигуранын элементтерин табууга колдоно алат.

Демек, биз Пифагордун жашоосу,анын атактуу теоремасы жөнүндө көп нерселерди билдик, түшүндүк.Бүгүн биз Пифагор теоремасы үч себептен улам белгилүү экенине ынандык: 1) жөнөкөйлүгү, 2)сулуулугу, 3) маанилүүлүгү. Ошондуктан Пифагор теоремасын – геометриянын казынасы деп аталат.Пифагордун теоремасы Гиннестер китебине киргизилген.

Балдар бүгүн силер өзүңөрдүн активдүүлүгүңөрдү,изденүүчү, сынчыл, чыгармачылык ойлонууну билген окуучулар экендигиңерди көсөттүңөр. Баарыңарга рахмат!

- Бааларыңызды өзүн-өзү баалоо баракчаларына жазыңыз. Өзүн-өзү баалоо баракчаларын тапшырыңыз.




Баалоо баракчасы


Окуучунун аты-жөнү



"Тик бурчтук" долбоору

топто иштөө..

Изилдөө иши


Топто иштөө.

Парктикалык иш

Өз алдынча иш..

1 туура жооп үчүн 1 упай

1 туура жооп үчүн 2 упай

1 туура жооп үчүн 2 упай

1 туура жооп үчүн 2 упай















































Баалоо баракчасы


Окуучунун аты-жөнү



"Тик бурчтук" долбоору

(топто иштөө).

Изилдөө иши:



Парктикалык иш

Кыска тест иши..

1 туура жооп үчүн 1 упай

1 туура жооп үчүн 2 упай

1 туура жооп үчүн 2 упай

1 туура жооп үчүн 2 упай









Баалоо баракчасы


Окуучунун аты-жөнү



"Тик бурчтуу үч бурчтук" долбоору

(топто иштөө.)

Изилдөө иши:



.

Практикалык иш

Кыска тест иши

1 туура жооп үчүн 1 упай

1 туура жооп үчүн 2 упай

1 туура жооп үчүн 2 упай

1 туура жооп үчүн 2 упай





Баалоо баракчасы


Окуучунун аты-жөнү



"Квадрат" долбоору

топто иштөө..

Изилдөө иши:



Топто иштөө.

Практикалык иш

Кыска тест иши

1 туура жооп үчүн 1 упай

1 туура жооп үчүн 2 упай

1 туура жооп үчүн 2 упай

1 туура жооп үчүн 2 упай