Моделирование
Наименование: Моделирование (образовано от латинского слова: modus — мера, способ, образец).
Определение: Моделирование — это метод воспроизведения и исследования определённого фрагмента действительности (предмета, явления, процесса, ситуации) или управления им, основанный на представлении объекта с помощью модели.
Раздел: Концепты научного дискурса
Дискурс: Наука
Субдискурс: Методология науки
Методы научного познания
Связанные концепты: Модель
Текст статьи: © В. С. Стёпин. Г. Б. Гутнер. Ф. Н. Голдберг. Подготовка электронной публикации и общая редакция: © Центр гуманитарных технологий. Ответственный редактор: А. В. Агеев. Информация на этой странице периодически обновляется. Последняя редакция: 21.04.2025.
Моделирование — это метод воспроизведения и исследования определённого фрагмента действительности (предмета, явления, процесса, ситуации) или управления им, основанный на представлении объекта с помощью его копии или подобия — модели (см. Модель). Модель обычно представляет собой либо материальную копию оригинала, либо некоторый условный образ, представленный в абстрактной (мысленной или знаковой) форме и содержащий существенные свойства моделируемого объекта. Процедуры создания моделей широко используются как в научно-теоретических, так и в прикладных сферах человеческой деятельности.
В научном познании (см. Наука) модель рассматривается как «объект-подобие» или «объект-заместитель» объекта-оригинала, воспроизводящий определённые его характеристики. В этом смысле модель всегда соответствует объекту-оригиналу — в тех свойствах, которые подлежат изучению, но в то же время отличается от него по ряду других признаков, что делает модель удобной для исследования изучаемого объекта. Результаты разработки и исследования моделей при определённых условиях, принимаемых в методологии науки и специфических для различных областей и типов моделей, распространяются на оригинал. Использование метода моделирования в научном познании диктуется необходимостью раскрыть такие стороны объектов, которые либо невозможно постигнуть путём непосредственного изучения, либо непродуктивно изучать их таким образом в силу каких-либо ограничений.
В научном познании возможны два способа моделирования:
Эмпирический способ моделирования — подразумевает воссоздание эмпирически выявленных свойств и связей объекта в его модели.
Теоретический способ моделирования — подразумевает теоретическое воссоздание объекта в его модели.
Модели, применяемые в научном познании, разделяются на два больших класса:
Материальные модели представляют собой природные объекты, подчиняющиеся в своём функционировании естественным законам. Подразделяются на два основных вида: предметно-физические и предметно-математические модели.
Идеальные модели представляют собой идеальные образования, зафиксированные в соответствующей знаковой форме и функционирующие по законам логики мышления, отражающей мир. Подразделяются на два основных вида: идеализированные модельные представления и знаковые модели.
Соответственно указанным различениям выделяют основные разновидности моделирования. Каждое из них применяется в зависимости от особенностей изучаемого объекта и характера познавательных задач.
Предметно-физическое моделирование широко используется как в научной практике, так и в сфере материального производства. Такое моделирование всегда предполагает, что модель должна быть сходна с оригиналом по физической природе и отличаться от него лишь численными значениями ряда параметров. Наряду с этим в практике научного исследования часто используется и такой вид моделирования, при котором модель строится из объектов иной физической природы, чем оригинал, но описывается одинаковой с ним системой математических зависимостей. В отличие от предметно-физического этот вид моделирования называют предметно-математическим. Предметная модель становится здесь объектом испытания и изучения, в результате которого создаётся её математическое описание. Последнее затем переносится на моделируемый объект, характеризуя его структуру и функционирование.
В развитой науке, особенно при переходе к теоретическим исследованиям, широко используется моделирование с применением идеальных моделей. Этот способ получения знаний об объектах может быть охарактеризован как моделирование посредством идеализированных представлений. Он является ведущим инструментом теоретического исследования. Активно используя модельные представления, научное исследование вместе с тем применяет и так называемое знаковое моделирование, которое основано на построении и испытании математических моделей некоторого класса явлений, без использования при этом вспомогательного физического объекта, который подвергается испытанию. Последнее отличает знаковую модель от предметно-математической. Такой вид моделирования иногда называют также абстрактно-математическим. Он требует построения знаковой модели, представляющей некоторый объект, где отношения и свойства объекта представлены в виде знаков и их связей. Эта модель затем исследуется чисто логическими средствами, и новое знание возникает в результате дедуктивного развёртывания модели без обращения к предметной области, на основании которой выросла данная знаковая модель. В абстрактно-математическом моделировании модель — это конструкция, изоморфная моделируемой системе. При таком моделировании каждому объекту системы ставится в соответствие определённый элемент моделирующей конструкции, а свойствам и отношениям объектов соответствуют свойства и отношения элементов.
Классическими примерами моделей, основанных на изоморфизме, являются модели аксиоматических систем в математике. Они задают семантику формальных построений и создают возможность для содержательной интерпретации аксиом. Сами аксиомы, как и следствия из них, считаются предложениями некоторого формального языка. Кроме того, задана область интерпретаций, представляющая собой множество индивидных объектов. Изоморфизм задаётся функцией, сопоставляющей каждому имени языка некоторый объект из заданного множества, а каждому выражению языка некоторое отношение объектов этого же множества. Если любое высказывание, которое выведено из аксиом, истинно в области интерпретаций (то есть соответствует реальным отношениям объектов), то эта область называется моделью системы аксиом. Моделирование в математике используется, например, для доказательства непротиворечивости формальных систем.