СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Сообщение на тему: Моделирование.

Категория: Информатика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Сообщение на тему: Моделирование.»



Моделирование

Наиме­но­ва­ние: Моделирование (образовано от латинского слова: modus — мера, способ, образец).

Опреде­ле­ние: Моделирование — это метод воспроизведения и исследования определённого фрагмента действительности (предмета, явления, процесса, ситуации) или управления им, основанный на представлении объекта с помощью модели.

Раздел: Концепты научного дискурса

Дискурс: Наука

Субдис­курс: Методология науки

Методы научного познания

Связан­ные концепты: Модель

Текст статьи: © В. С. Стёпин. Г. Б. Гутнер. Ф. Н. Голдберг. Подготовка элект­рон­ной публи­ка­ции и общая редакция: © Центр гума­нитар­ных техно­логий. Ответ­ст­вен­ный редактор: А. В. Агеев. Инфор­ма­ция на этой стра­нице пери­оди­чески обнов­ля­ется. Послед­няя редакция: 21.04.2025.

Моделирование — это метод воспроизведения и исследования определённого фрагмента действительности (предмета, явления, процесса, ситуации) или управления им, основанный на представлении объекта с помощью его копии или подобия — модели (см. Модель). Модель обычно представляет собой либо материальную копию оригинала, либо некоторый условный образ, представленный в абстрактной (мысленной или знаковой) форме и содержащий существенные свойства моделируемого объекта. Процедуры создания моделей широко используются как в научно-теоретических, так и в прикладных сферах человеческой деятельности.



В научном познании (см. Наука) модель рассматривается как «объект-подобие» или «объект-заместитель» объекта-оригинала, воспроизводящий определённые его характеристики. В этом смысле модель всегда соответствует объекту-оригиналу — в тех свойствах, которые подлежат изучению, но в то же время отличается от него по ряду других признаков, что делает модель удобной для исследования изучаемого объекта. Результаты разработки и исследования моделей при определённых условиях, принимаемых в методологии науки и специфических для различных областей и типов моделей, распространяются на оригинал. Использование метода моделирования в научном познании диктуется необходимостью раскрыть такие стороны объектов, которые либо невозможно постигнуть путём непосредственного изучения, либо непродуктивно изучать их таким образом в силу каких-либо ограничений.



В научном познании возможны два способа моделирования:



Эмпирический способ моделирования — подразумевает воссоздание эмпирически выявленных свойств и связей объекта в его модели.

Теоретический способ моделирования — подразумевает теоретическое воссоздание объекта в его модели.

Модели, применяемые в научном познании, разделяются на два больших класса:



Материальные модели представляют собой природные объекты, подчиняющиеся в своём функционировании естественным законам. Подразделяются на два основных вида: предметно-физические и предметно-математические модели.

Идеальные модели представляют собой идеальные образования, зафиксированные в соответствующей знаковой форме и функционирующие по законам логики мышления, отражающей мир. Подразделяются на два основных вида: идеализированные модельные представления и знаковые модели.

Соответственно указанным различениям выделяют основные разновидности моделирования. Каждое из них применяется в зависимости от особенностей изучаемого объекта и характера познавательных задач.



Предметно-физическое моделирование широко используется как в научной практике, так и в сфере материального производства. Такое моделирование всегда предполагает, что модель должна быть сходна с оригиналом по физической природе и отличаться от него лишь численными значениями ряда параметров. Наряду с этим в практике научного исследования часто используется и такой вид моделирования, при котором модель строится из объектов иной физической природы, чем оригинал, но описывается одинаковой с ним системой математических зависимостей. В отличие от предметно-физического этот вид моделирования называют предметно-математическим. Предметная модель становится здесь объектом испытания и изучения, в результате которого создаётся её математическое описание. Последнее затем переносится на моделируемый объект, характеризуя его структуру и функционирование.



В развитой науке, особенно при переходе к теоретическим исследованиям, широко используется моделирование с применением идеальных моделей. Этот способ получения знаний об объектах может быть охарактеризован как моделирование посредством идеализированных представлений. Он является ведущим инструментом теоретического исследования. Активно используя модельные представления, научное исследование вместе с тем применяет и так называемое знаковое моделирование, которое основано на построении и испытании математических моделей некоторого класса явлений, без использования при этом вспомогательного физического объекта, который подвергается испытанию. Последнее отличает знаковую модель от предметно-математической. Такой вид моделирования иногда называют также абстрактно-математическим. Он требует построения знаковой модели, представляющей некоторый объект, где отношения и свойства объекта представлены в виде знаков и их связей. Эта модель затем исследуется чисто логическими средствами, и новое знание возникает в результате дедуктивного развёртывания модели без обращения к предметной области, на основании которой выросла данная знаковая модель. В абстрактно-математическом моделировании модель — это конструкция, изоморфная моделируемой системе. При таком моделировании каждому объекту системы ставится в соответствие определённый элемент моделирующей конструкции, а свойствам и отношениям объектов соответствуют свойства и отношения элементов.



Классическими примерами моделей, основанных на изоморфизме, являются модели аксиоматических систем в математике. Они задают семантику формальных построений и создают возможность для содержательной интерпретации аксиом. Сами аксиомы, как и следствия из них, считаются предложениями некоторого формального языка. Кроме того, задана область интерпретаций, представляющая собой множество индивидных объектов. Изоморфизм задаётся функцией, сопоставляющей каждому имени языка некоторый объект из заданного множества, а каждому выражению языка некоторое отношение объектов этого же множества. Если любое высказывание, которое выведено из аксиом, истинно в области интерпретаций (то есть соответствует реальным отношениям объектов), то эта область называется моделью системы аксиом. Моделирование в математике используется, например, для доказательства непротиворечивости формальных систем.