СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Тригонометрические уравнения.

Категория: Математика

Нажмите, чтобы узнать подробности

Уважаемые коллеги! Надеюсь, в вашей деятельности пригодится презентация одной из моих студенток по алгебре по теме: "Решение тригонометрических уравнений".  

Просмотр содержимого документа
«Тригонометрические уравнения.»

 Учиться можно только  весело…  Чтобы переваривать  знания, надо поглощать  их с аппетитом. Анатоль Франс 1844 - 1924

Учиться можно только

весело…

Чтобы переваривать

знания, надо поглощать

их с аппетитом.

Анатоль Франс

1844 - 1924

sin x = 1 cos x = 0 sin 4x – sin 2x = 0 Удачи! Решение тригонометрических уравнений. ОГБПОУ Ивановский железнодорожный колледж. Подготовила студентка 1 курса гр.13/14 Брюквина Анастасия

sin x = 1

cos x = 0

sin 4x – sin 2x = 0

Удачи!

Решение тригонометрических уравнений.

ОГБПОУ Ивановский железнодорожный колледж. Подготовила студентка 1 курса гр.13/14

Брюквина Анастасия

1 уравнения sin x = a при ‌ а ‌ 1 2 . При каком значении а При каком значении а уравнение sin x = a имеет решение? уравнение cos x = a имеет решение? Какой формулой Какой формулой выражается это решение? выражается это решение? 4. На какой оси откладывается значение а при решении уравнения cos x = a ? 4. На какой оси откладывается значение а при решении уравнения sin x = a ? " width="640"

Проверочная работа.

Вариант 1.

Вариант 2.

  • Каково будет решение
  • Каково будет решение

уравнения cos x = a при ‌ а ‌ 1

уравнения sin x = a при ‌ а ‌ 1

2 . При каком значении а

  • При каком значении а

уравнение sin x = a имеет

решение?

уравнение cos x = a имеет

решение?

  • Какой формулой
  • Какой формулой

выражается это решение?

выражается это решение?

4.

На какой оси откладывается

значение а при решении

уравнения cos x = a ?

4.

На какой оси откладывается

значение а при решении

уравнения sin x = a ?

Проверочная работа. Вариант 1. Вариант 2. 5. В каком промежутке  находится arccos a ?  5 . В каком промежутке  находится arcsin a ? В каком промежутке 6. В каком промежутке  находится значение а?  находится значение а? Каким будет решение 7. Каким будет решение  уравнения sin x = 1?   уравнения cos x = 1?  8 . Каким будет решение  уравнения cos x = -1? 8. Каким будет решение  уравнения sin x = -1?

Проверочная работа.

Вариант 1.

Вариант 2.

5. В каком промежутке

находится arccos a ?

5 . В каком промежутке

находится arcsin a ?

  • В каком промежутке

6. В каком промежутке

находится значение а?

находится значение а?

  • Каким будет решение

7. Каким будет решение

уравнения sin x = 1?

уравнения cos x = 1?

8 . Каким будет решение

уравнения cos x = -1?

8. Каким будет решение

уравнения sin x = -1?

Проверочная работа. Вариант 1. Вариант 2. 9. Каким будет решение  уравнения cos x = 0? 9. Каким будет решение  уравнения sin x = 0 ?  Чему равняется 10. Чему равняется  arcsin ( - a)?  arccos ( - a)?  В каком промежутке 11. В каком промежутке   находится arcctg a?    находится arctg a?  Какой формулой 12. Какой формулой  выражается решение  уравнения с tg x = а?  выражается решение  уравнения tg x = а?

Проверочная работа.

Вариант 1.

Вариант 2.

9. Каким будет решение

уравнения cos x = 0?

9. Каким будет решение

уравнения sin x = 0 ?

  • Чему равняется

10. Чему равняется

arcsin ( - a)?

arccos ( - a)?

  • В каком промежутке

11. В каком промежутке

находится arcctg a?

находится arctg a?

  • Какой формулой

12. Какой формулой

выражается решение

уравнения с tg x = а?

выражается решение

уравнения tg x = а?

№ Вариант 1. 1. Вариант 2. Нет решения 2. Нет решения 3. 4. 5. На оси Ох На оси Оу 6. 7. 8. 9. 10. 11. 12.

Вариант 1.

1.

Вариант 2.

Нет решения

2.

Нет решения

3.

4.

5.

На оси Ох

На оси Оу

6.

7.

8.

9.

10.

11.

12.

Найди ошибку. ? 1 2 3 4 5

Найди ошибку.

?

1

2

3

4

5

Какая из схем лишняя? 1 2 3 6 5 4

Какая из схем лишняя?

1

2

3

6

5

4

Какие из схем лишние? 1 2 3 5 4 6

Какие из схем лишние?

1

2

3

5

4

6

Установите соответствие: sin x = 0 1 cos x = -1 2 3 sin x = 1 cos x = 1 4 tg x = 1 5 sin x = - 1 6 7 cos x = 0

Установите соответствие:

sin x = 0

1

cos x = -1

2

3

sin x = 1

cos x = 1

4

tg x = 1

5

sin x = - 1

6

7

cos x = 0

Установите соответствие: 1 sin x = 0 cos x = -1 2 sin x = 1 3 4 cos x = 1 5 tg x = 1 6 sin x = - 1 7 cos x = 0

Установите соответствие:

1

sin x = 0

cos x = -1

2

sin x = 1

3

4

cos x = 1

5

tg x = 1

6

sin x = - 1

7

cos x = 0

1. Решение какого уравнения показано на тригонометрической окружности? sin x = 1/2

1.

Решение какого уравнения показано на тригонометрической окружности?

sin x = 1/2

2. Решение какого уравнения показано на тригонометрической окружности? cos x = √ 2 /2

2.

Решение какого уравнения показано на тригонометрической окружности?

cos x = 2 /2

3 . Решение какого уравнения показано на тригонометрической окружности? tg x = - √ 3 / 3

3 .

Решение какого уравнения показано на тригонометрической окружности?

tg x = - 3 / 3

4 . Решение какого уравнения показано на тригонометрической окружности? ctg x = √ 3

4 .

Решение какого уравнения показано на тригонометрической окружности?

ctg x = 3

Необходимо выбрать соответствующий прием для решения уравнений. Методы решения  тригонометрических уравнений. Уравнения сводимые к алгебраическим. Вариант 1: Вариант 2:

Необходимо выбрать соответствующий прием для решения уравнений.

Методы решения тригонометрических уравнений.

Уравнения сводимые

к алгебраическим.

Вариант 1:

Вариант 2:

Методы решения  тригонометрических уравнений. Уравнения сводимые к алгебраическим Разложение на множители Вариант 1: Вариант 2:

Методы решения тригонометрических уравнений.

Уравнения сводимые

к алгебраическим

Разложение на множители

Вариант 1:

Вариант 2:

Методы решения  тригонометрических уравнений. Уравнения сводимые к алгебраическим Разложение на множители Введение новой переменной (однородные уравнения) Вариант 1: Вариант 2:

Методы решения тригонометрических уравнений.

Уравнения сводимые

к алгебраическим

Разложение на множители

Введение новой переменной

(однородные уравнения)

Вариант 1:

Вариант 2:

Методы решения  тригонометрических уравнений. Уравнения сводимые к алгебраическим Разложение на множители Введение новой переменной (однородные уравнения) Введение вспомогательного аргумента. Вариант 2: Вариант 1:

Методы решения тригонометрических уравнений.

Уравнения сводимые

к алгебраическим

Разложение на множители

Введение новой переменной

(однородные уравнения)

Введение вспомогательного

аргумента.

Вариант 2:

Вариант 1:

Методы решения  тригонометрических уравнений. Уравнения сводимые к алгебраическим Разложение на множители Введение новой переменной (однородные уравнения) Введение вспомогательного аргумента. Уравнения, решаемые переводом суммы в произведение В1: В2:

Методы решения тригонометрических уравнений.

Уравнения сводимые

к алгебраическим

Разложение на множители

Введение новой переменной

(однородные уравнения)

Введение вспомогательного

аргумента.

Уравнения, решаемые переводом

суммы в произведение

В1:

В2:

Применение формул понижения степени. Формулы квадрата половинных углов: Формулы понижения степени: 2 sin 2 x + cos 4x = 0 В1: В2:

Применение формул понижения

степени.

Формулы квадрата половинных углов:

Формулы понижения степени:

2 sin 2 x + cos 4x = 0

В1:

В2:

№ 207 (а, б, в, д) стр. 389 Домашнее задание:

207 (а, б, в, д) стр. 389

Домашнее задание: