СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Вариант 4.Тренировочный вариант ОГЭ по математике.

Категория: Математика

Нажмите, чтобы узнать подробности

Работа состоит из трёх модулей: «Алгебра», «Геометрия», «Реальная математика». Всего в работе 26 заданий. Модуль «Алгебра» содержит 11 заданий: в части 1 — восемь заданий; в части 2 — три задания. Модуль «Геометрия» содержит восемь заданий: в части 1 — пять заданий; в части 2 — три задания. Модуль «Реальная математика» содержит семь заданий: все задания этого модуля — в части 1. 

Просмотр содержимого документа
«Вариант 4.Тренировочный вариант ОГЭ по математике.»



При вы­пол­не­нии заданий 2, 3, 8, 14 вы­бе­ри­те один из четырёх пред­ла­га­е­мых вариантов ответа. Ответом на задания 1, 4—7, 9—13, 15—20 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте запятой. Единицы измерений писать не нужно. 

Вариант № 4

1. Най­ди­те зна­че­ние вы­ра­же­ния 


2. На ко­ор­ди­нат­ной пря­мой от­ме­че­ны числа a, b, и c.

В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

 

 

Ука­жи­те номер вер­но­го утвер­жде­ния.

 

1) 

2) 

3) 

4) 


3. Пло­щадь тер­ри­то­рии Рос­сии со­став­ля­ет 1,7 · 107 км2, а Нор­ве­гии — 3,2⋅105 км2. Во сколь­ко раз пло­щадь тер­ри­то­рии Рос­сии боль­ше пло­ща­ди тер­ри­то­рии Нор­ве­гии?

В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

 

1) при­мер­но в 1,9 раза

2) при­мер­но в 5,3 раза

3) при­мер­но в 53 раза

4) при­мер­но в 530 раз


4. Най­ди­те корни урав­не­ния 

Если кор­ней не­сколь­ко, за­пи­ши­те их через точку с за­пя­той в по­ряд­ке воз­рас­та­ния.


5. На ри­сун­ке изоб­ражён гра­фик квад­ра­тич­ной функ­ции y = f(x).

Какие из сле­ду­ю­щих утвер­жде­ний о дан­ной функ­ции не­вер­ны? За­пи­ши­те их но­ме­ра.

 

 

1) Функ­ция убы­ва­ет на про­ме­жут­ке [−1; +∞).

2) f(−3)f(0).

3) f(x)x


6. Вы­пи­са­ны пер­вые не­сколь­ко чле­нов гео­мет­ри­че­ской про­грес­сии: −175; −140; −112; ... Най­ди­те её пятый член.



7. Най­ди­те зна­че­ние вы­ра­же­ния  при 


8. Ре­ши­те не­ра­вен­ство

 

и опре­де­ли­те, на каком ри­сун­ке изоб­ра­же­но мно­же­ство его ре­ше­ний.

В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

 


9. Сумма трех углов вы­пук­ло­го че­ты­рех­уголь­ни­ка равна 300°. Най­ди­те чет­вер­тый угол. Ответ дайте в гра­ду­сах.


10. Най­ди­те ∠DEF, если гра­дус­ные меры дуг DE и EF равны 150° и 68° со­от­вет­ствен­но.


11. Най­ди­те пло­щадь квад­ра­та, если его диа­го­наль равна 3.


12. Най­ди­те тан­генс угла AOB, в тре­уголь­ни­ке, изоб­ражённом на ри­сун­ке.


13. Какое из сле­ду­ю­щих утвер­жде­ний верно?

 

1) Диа­го­на­ли па­рал­ле­ло­грам­ма равны.

2) Пло­щадь ромба равна про­из­ве­де­нию его сто­ро­ны на вы­со­ту, про­ведённую к этой сто­ро­не.

3) Если две сто­ро­ны и угол од­но­го тре­уголь­ни­ка равны со­от­вет­ствен­но двум сто­ро­нам и углу дру­го­го тре­уголь­ни­ка, то такие тре­уголь­ни­ки равны.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.


14. Учёный Ко­ма­ров вы­ез­жа­ет из Моск­вы на кон­фе­рен­цию в Санкт-Пе­тер­бург­ский уни­вер­си­тет. Ра­бо­та кон­фе­рен­ции на­чи­на­ет­ся в 8:30. В таб­ли­це дано рас­пи­са­ние ноч­ных по­ез­дов Москва — Санкт-Пе­тер­бург.

 

Номер по­ез­да

От­прав­ле­ние из Моск­вы

При­бы­тие в Санкт-Пе­тер­бург

032АВ

22:50

05:48

026А

23:00

06:30

002А

23:55

07:55

004А

23:59

08:00

 

Путь от вок­за­ла до уни­вер­си­те­та за­ни­ма­ет пол­то­ра часа. Ука­жи­те номер са­мо­го позд­не­го (по вре­ме­ни от­прав­ле­ния) из мос­ков­ских по­ез­дов, ко­то­рые под­хо­дят учёному Ко­ма­ро­ву.

В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

 

1) 032АВ

2) 026А

3) 002А

4) 004А


15. На гра­фи­ке изоб­ра­же­на за­ви­си­мость ат­мо­сфер­но­го дав­ле­ния (в мил­ли­мет­рах ртут­но­го стол­ба) от вы­со­ты мест­но­сти над уров­нем моря (в ки­ло­мет­рах). На сколь­ко мил­ли­мет­ров ртут­но­го стол­ба ат­мо­сфер­ное дав­ле­ние на вы­со­те Эве­ре­ста ниже ат­мо­сфер­но­го дав­ле­ния на вы­со­те Эль­бру­са?

 


16. Спор­тив­ный ма­га­зин про­во­дит акцию: «Любой джем­пер по цене 400 руб­лей. При по­куп­ке двух джем­пе­ров — скид­ка на вто­рой 75%». Сколь­ко руб­лей придётся за­пла­тить за по­куп­ку двух джем­пе­ров?



17. Две трубы, диа­мет­ры ко­то­рых равны 7 см и 24 см, тре­бу­ет­ся за­ме­нить одной, пло­щадь по­пе­реч­но­го се­че­ния ко­то­рой равна сумме пло­ща­дей по­пе­реч­ных се­че­ний двух дан­ных. Каким дол­жен быть диа­метр новой трубы? Ответ дайте в сан­ти­мет­рах.


18. На диа­грам­ме пред­став­ле­но рас­пре­де­ле­ние ко­ли­че­ства поль­зо­ва­те­лей не­ко­то­рой со­ци­аль­ной сети по стра­нам мира. Всего в этой со­ци­аль­ной сети 12 млн поль­зо­ва­те­лей.

Какое из сле­ду­ю­щих утвер­жде­ний не­вер­но?

 

1) Поль­зо­ва­те­лей из Укра­и­ны боль­ше, чем поль­зо­ва­те­лей из Литвы.

2) Поль­зо­ва­те­лей из Укра­и­ны мень­ше чет­вер­ти об­ще­го числа поль­зо­ва­те­лей.

3) Поль­зо­ва­те­лей из Бе­ла­ру­си боль­ше 3 мил­ли­о­нов.

4) Поль­зо­ва­те­лей из Рос­сии боль­ше, чем из всех осталь­ных стран, вме­сте взя­тых.


19. В лыж­ных гон­ках участ­ву­ют 7 спортс­ме­нов из Рос­сии, 1 спортс­мен из Шве­ции и 2 спортс­ме­на из Нор­ве­гии. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что спортс­мен из Шве­ции будет стар­то­вать по­след­ним.


20. Чтобы пе­ре­ве­сти зна­че­ние тем­пе­ра­ту­ры по шкале Цель­сия (t °C) в шкалу Фа­рен­гей­та (t °F), поль­зу­ют­ся фор­му­лой F = 1,8C + 32 , где C — гра­ду­сы Цель­сия, F — гра­ду­сы Фа­рен­гей­та. Какая тем­пе­ра­ту­ра по шкале Цель­сия со­от­вет­ству­ет 63° по шкале Фа­рен­гей­та? Ответ округ­ли­те до де­ся­тых.


21. Ре­ши­те урав­не­ние 


22. Име­ет­ся два спла­ва с раз­ным со­дер­жа­ни­ем меди: в пер­вом со­дер­жит­ся 60%, а во вто­ром — 45% меди. В каком от­но­ше­нии надо взять пер­вый и вто­рой спла­вы, чтобы по­лу­чить из них новый сплав, со­дер­жа­щий 55% меди?


23. По­строй­те гра­фик функ­ции  и опре­де­ли­те, при каких зна­че­ни­ях k пря­мая y = kx имеет с гра­фи­ком ровно одну общую точку.


24. Сто­ро­ны AC, AB, BC тре­уголь­ни­ка ABC равны  и 1 со­от­вет­ствен­но. Точка K рас­по­ло­же­на вне тре­уголь­ни­ка ABC , причём от­ре­зок KC пе­ре­се­ка­ет сто­ро­ну AB в точке, от­лич­ной от B. Из­вест­но, что тре­уголь­ник с вер­ши­на­ми K , A и C по­до­бен ис­ход­но­му. Най­ди­те ко­си­нус угла AKC, если ∠KAC90° .


25. Дан пра­виль­ный ше­сти­уголь­ник. До­ка­жи­те, что если по­сле­до­ва­тель­но со­еди­нить от­рез­ка­ми се­ре­ди­ны его сто­рон, то по­лу­чит­ся пра­виль­ный ше­сти­уголь­ник.


26. В тре­уголь­ни­ке  бис­сек­три­са угла  делит вы­со­ту, про­ведённую из вер­ши­ны , в от­но­ше­нии , счи­тая от точки . Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка , если .