СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
.
Цели:
Образовательные:
- рассмотреть теорему Фалеса и её доказательство;
- закрепить теорему Фалеса в процессе решения задач;
- совершенствовать навыки решения задач на применение знаний по теме «Трапеция»
Воспитательные:
- формирование способностей анализировать свои действия, умения внимательно слушать
Развивающие:
Развитие логического мышления, воображения, памяти, кругозора, умения рассуждать и аргументировать.
Оборудование: доска, циркуль, линейка, треугольник, компьютер, проектор, экран, презентация.
Ход урока.
Я надеюсь, что этот урок пройдет интересно, с большой пользой для всех. Очень хочу, чтобы те, кто еще равнодушен к царице всех наук, с нашего урока ушел с глубоким убеждением, что геометрия – интересный и нужный предмет.
Французский писатель XIX столетия Анатоль Франс однажды заметил: “Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом”.
Давайте последуем совету писателя на сегодняшнем уроке: будьте активны, внимательны, поглощайте с большим желанием знания, которые пригодятся вам в дальнейшей жизни.
Тема сегодняшнего урока «Теорема Фалеса». Вы не только познакомитесь с этой теоремой, её доказательством, но также увидите, где можно ее применить.
Предлагаю выполнить такое задание: разделить отрезок на две, четыре, три части с помощью циркуля. (Учащиеся выходят к доске и показывают)
Перед вами стоит проблема деления отрезка на три равные части, а ученые столкнулись с проблемой деления отрезка на равные части много веков назад. И, конечно, они нашли выход из положения.
И чтобы нам сегодня справиться с возникшей задачей, докажем одну из важнейших теорем геометрии, которая называется Теорема Фалеса. Кем же был Фалес, что в его честь даже названа теорема в геометрии?
Фалес Милетский – древнегреческий философ из г. Милета (Малая Азия – территория современной Турции). Сведения о его жизни до сих пор носят противоречивый характер, но считается, что:
- именно он привез геометрию из Египта и познакомил с нею греков; его последователи и ученики основали Милетскую школу;
- именно его греки уже в древности называли «отцом философии»;
- именно он «открыл» для греков созвездие Малой Медведицы как путеводный инструмент;
- именно он ввёл календарь по египетскому образцу, в котором год состоял из 365 дней.
- одна из легенд гласит, что будучи в Египте, Фалес поразил фараона Амасиса тем, что сумел точно измерить высоту пирамиды. Как вы думаете, как он это сделал? Дождался пока длина тени от палки станет равной самой палке, значит и тень от пирамиды равна будет самой пирамиде;
- он предсказал солнечное затмение в мае 585 года до н.э.
Но одна из важнейших заслуг Фалеса в том, что ученый первый стал доказывать геометрические теоремы:
Вот такой был Фалес Милетский, в честь которого названа теорема в геометрии и эту теорему мы сегодня и рассмотрим.
Помощь в доказательстве Теоремы Фалеса нам окажет задача № 384, которую мы сейчас решим. (презентация)
Задача. Через середину М стороны АВ треугольника АВС проведена прямая, параллельная стороне ВС. Эта прямая пересекает сторону АС в точке N. Докажите, что AN = NC.
Доказательство.
Из 1) и 2) → Δ AMN = ΔNDC, значит AN = NC, что и требовалось доказать.
Какой вывод из этой задачи мы можем сделать?
Если в треугольнике через середину одной стороны провести прямую, параллельную одной из двух других сторон, то эта прямая пройдет через середину третьей стороны.
Теорема Фалеса: «Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки».
Доказательство:
Пусть на прямой l1 отложены равные отрезки А1А2, А2А3, А3А4, … и через их концы проведены параллельные прямые, которые пересекают прямую l2 в точках В1, В2, В3, В4, …. Требуется доказать, что отрезки В1В2, В2В3, В3В4, … равны друг другу. Докажем, например, что В1В2 = В2В3.
Теорема доказана.
Решение задач на готовых чертежах.
Разделить отрезок на 5 равных частей.
- С какой теоремой вы сегодня познакомились?
- На сколько частей вы теперь можете разделить данный отрезок?
Собрать из кусочков Теорему Фалеса.
Решить задачу № 391
Выучить доказательство теоремы Фалеса
(см. запись в тетради или задачи № 384, 385)
Выполнить практическую работу:
Разделить отрезок на 11 равных частей
-80%
© 2025, Красавина Татьяна Владимировна 165