СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
ТЕМА: Решение занимательных задач – один из путей активизации
творческой деятельности учащихся.
«Если вы хотите научиться плавать, то смело входите в воду, а если хотите решать задачи, то решайте их».
Д.Пойя
«Истинный педагог постарается сделать учение занимательным, но никогда не лишит его характера серьезного труда, требующего усилия воли».
К.Д.Ушинский
«Основная задача обучения математики в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования», - говорится в объяснительной записке программы по математике. Но в последние годы много и часто говорят о недостаточной эффективности процесса обучения в школе.
Проблема развития ученика является одной из сложнейших в педагогической практике. Решение этой проблемы зависит от того, на получение какого именно результата ориентируется учитель в своей работе. Педагогические задачи многофункциональны, но основное содержание педагогической деятельности – ученик. Следовательно, критерием деятельности учителя является конечный результат: дать ученику лишь набор знаний по предмету или сформировать личность, готовую к творческой деятельности.
В первом случае не приходится говорить о развитии учащихся, поскольку ученик получает готовую информацию, запоминает ее, затем воспроизводит, т.е. мы осуществляем репродуктивную деятельность. В этом случае нужны способности к обучению, но это обучение не оказывает существенного влияния как на общее психологическое развитие детей, так и на развитие их специальных способностей. А именно это и есть, по определению В.В.Давыдова, развивающее обучение. Поэтому, если школа ставит своей целью развитие ребенка, то конечный результат деятельности учителя – психические новообразования в личности учащегося. «Сделать учебную работу насколько возможно интересной для ребенка и не превратить эту работу в забаву – одна из труднейших и важнейших задач дидактики», - писал К.Д.Ушинский.
Актуальность и перспективы опыта.
Возникновение интереса к математике у учащихся зависит в большей степени от методики ее преподавания, от того, насколько умело будет построена учебная работа. Надо позаботиться о том, чтобы на уроках каждый ученик работал активно и увлеченно, и использовать это как отправную точку для возникновения и развития любознательности, глубокого познавательного интереса. Это особенно важно в подростковом возрасте, когда еще формируются, а иногда и только определяются постоянные интересы и склонности к тому или иному предмету. Именно в этот период нужно стремиться раскрыть наиболее притягательные и интересные стороны математики.
Современный учитель должен уметь создавать условия для развития творческих способностей, развивать у учеников стремление к творческому восприятию знаний, учить их самостоятельно мыслить, самостоятельно формулировать вопросы для себя в процессе изучения материала, полнее реализовывать их потребности, поощрять их индивидуальные склонности и дарования, то есть сделать выпускника современной школы конкурентоспособным.
Развитие учащихся зависит от той деятельности, которую они выполняют в процессе обучения – репродуктивную или продуктивную (творческую). Только тогда, когда учебная деятельность, направленная на овладение основами наук и на развитие личностных качеств, сформирована на более высоком уровне, начинает ясно проявляться ее творческая сторона. Возможности школьников различны, но они должны приводиться в движение для развития творческой деятельности, а вместе с тем и личности ученика. Имеются разные методы: исследовательский, поисковый, метод проблемной ситуации и иное логико-содержательное построение курса. Важно лишь пробудить мыслительный процесс ученика.
Творческая деятельность ученика зависит от наличия трех компонентов мышления:
высокий уровень сформированности элементарных мыслительных операций: анализа и синтеза, сравнения и аналогии, классификации;
высокий уровень активности и неординарности мышления, которые проявляются в различных вариантах решений и в выдвижении нестандартных идей;
высокий уровень организованности и целенаправленности мышления, которые проявляются в умении выделить существенное в явлениях и сознании собственных способов мышления.
Ученик, имеющий названные качества мышления, может преодолеть трудности в овладении учебным материалом и выйти победителем в незнакомых ситуациях. Следовательно, задача учителя сводится к формированию указанных составляющих мышления. Инструментом должны быть занимательные задачи: задачи-головоломки, на соображение и догадку, нестандартные задачи.
«Математика учит точности мысли, подчинению логике доказательства, понятию строго обоснованной истины, а все это формирует личность, пожалуй, больше, чем музыка».
А.Д.Александрова.
Борис Сосновский считает, что «Педагогическая работа это прежде всего и более всего работа психологическая». Мне нравится притча о Шартрском соборе, и я ее рассказываю детям: «Путник спросил трех его строителей, кативших по дороге тачки с камнями, что они делают. Один сказал: «Везу тачку, пропади она пропадом». Второй сказал: «Зарабатываю на хлеб. Семья». Третий сказал: «Я строю Шартрский собор». Хотелось бы, чтоб все мы: и учителя, и дети, отвечая на вопрос: «Зачем мы ходим в школу?», сказали правду и в этой правде-ответе были составляющие ответов рабочих, но предпочтение отдано третьему ответу.
Каков же он – современный ученик? Мой ученик?
Он понимает и любит математику как я. Он относится к своей математической деятельности так же, как я к своей, прежде всего – серьезно. Но он самостоятелен по мыслям и поступкам. Он спорим со мной, не соглашается со мной. Мой ученик критически воспринимает написанное и сказанное, пропуская все через себя. Мой ученик может ошибаться, оставляя и за мной это право.
Но все это будет, если присутствует, имеется определенная атмосфера, «микроклимат». Атмосфера рождается от взаимоприсутствия и взаимодействия конкретных людей, существует вне нас, но и в нас, поскольку мы – взрослые и дети – ее и творим. Ее основа – отношения: мое - к детям и к предмету, и отношения детей ко мне и к предмету. Атмосферу невозможно скопировать и нельзя перенять из чужого опыта, он зависит от установки, если изменилась установка, то меняется атмосфера. Но в большей степени она зависит от учителя, от его нравственности или безнравственности, его требовательности к себе и самоконтроле. Хорошая атмосфера – это радость и успех в труде. Плохая атмосфера – нет желания трудиться. Идеальная атмосфера – это совместная работа в поиске истины.
Смекалка – это особый вид проявления творчества. Она выражается в результате анализа сравнений, обобщений, установления связей, аналогии, выводов, умозаключений. Эти качества умственной деятельности можно и нужно развивать в процессе обучения. Предлагая учащимся занимательные задачи, я формирую у них способность выполнять эти операции и одновременно развиваю смекалку.
Основными мыслительными операциями, которые присутствуют практически во всех логических приемах, являются анализ и синтез. Анализ – совокупность мыслительных операций, логический прием, состоящий в разложении изучаемого объекта на характерные для него составные элементы, выделении в нем отдельных сторон, изучении каждого элемента или стороны объекта в отдельности как части целого. Синтез – совокупность мыслительных операций, логический прием, состоящий в соединении элементов (частей) или свойств (сторон) изучаемого объекта, полученных при анализе, в установлении взаимосвязей между частями и получении знания об этом объекте как о едином целом.
В заключении перечислю еще ряд приемов и методов, позволяющих мне активизировать познавательную и творческую деятельность учащихся:
- Групповой метод решения задач. Работа в парах.
- Различные формы работы с книгой.
-Использование различных видов поощрений (жетоны, словесное, присвоение звания «Лучший математик класса» и т.п.).
- Использование проблемных ситуаций.
- Использование на уроках элементов историзма, занимательности: уроки-сказки, уроки-путешествия и т.д.).
- Самостоятельные работы с использованием аналогий, сравнений.
- Изложение материала блоками.
-Наглядность, доступность, оригинальность решений различными способами, самостоятельность в получении знаний, связь науки с практикой.
Хочется закончить словами К.Бальмонта: «Умей творить из самых малых крох, иначе для чего же ты кудесник?». Ведь одна из задач работы учителя - это сделать процесс обучения интересным для каждого ученика всеми возможными способами, т.к. «Лучше усваиваются те знания, которые поглощаются с аппетитом». (А.Франс.)
-80%
© 2017, Демченко Елена Михайловна 904