СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 18.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Треугольник Пенроуза

Нажмите, чтобы узнать подробности

На внеклассных заниятиях по математике я люблю обращать внимание на " невозможные фигуры ". Это касается Треугольника Пенроуза, "Чертовой вилки", гравюр Мариуса Эшера. Для детей я подготовила презентацию ( https://multiurok.ru/files/treugolnik-penrouza.html ). Занятно выполнить модель этой фигуры.

Расхожее выражение "обман зрения" по сути своей неверно. Глаза не могут обмануть нас, поскольку являются только промежуточным звеном между объектом и мозгом человека. Обман зрения обычно возникает не из-за того, что мы видим, а из-за того, что бессознательно рассуждаем и невольно заблуждаемся: "посредством глаза, а не глазом смотреть на мир умеет разум".

Одним из наиболее эффектных направлений художественного течения оптического искусства (op-art) является имп-арт (imp-art, impossible art), основанный на изображении невозможных фигур. Невозможные объекты представляют собой рисунки на плоскости (любая плоскость двухмерна), изображающие трехмерные структуры, существование которых в реальном трехмерном мире невозможно. Классической и одной из самых простых фигур является невозможный треугольник.

В невозможном треугольнике каждый угол сам по себе является возможным, но парадокс возникает, когда мы рассматриваем его целиком. Стороны треугольника направлены одновременно и к зрителю, и от него, поэтому отдельные его части не могут образовать реальный трехмерный объект.

Невозможный треугольник Пенроуза Треугольник, воспринимаемый как "возможный"

Собственно говоря, наш мозг интерпретирует рисунок на плоскости как трехмерную модель. Сознание задает "глубину", на которой находится каждая точка изображения. Наши представления о реальном мире сталкиваются с противоречием, с некоей непоследовательностью, и приходится делать некоторые допущения:

Треугольник Рейтерсвэрда
  • прямые двухмерные линии интерпретируются как прямые трехмерные линии;
  • двухмерные параллельные линии интерпретируются как трехмерные параллельные линии;
  • острые и тупые углы интерпретируются как прямые углы в перспективе;
  • внешние линии рассматриваются как граница формы. Эта внешняя граница чрезвычайно важна для построения полного изображения.

Человеческое сознание сначала создает общее изображение предмета, а затем рассматривает отдельные части. Каждый угол совместим с пространственной перспективой, но, воссоединившись, они образуют пространственный парадокс. Если закрыть любой из углов треугольника, то невозможность пропадает.

07.01.2022 16:20


Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!

Поделитесь с друзьями
ВКонтактеОдноклассникиTwitterМой МирLiveJournalGoogle PlusЯндекс