СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
♦ В декабре 1801 г. Алессандро Вольта после доклада во Французской академии наук получает из рук Наполеона Большую золотую медаль, присуждаемую за выдающиеся достижения в науке. Вольте в это время 56 лет, он опровергает своей судьбой устоявшееся мнение, что открытия в физике совершаются только до 30. Наполеон всегда помнил о Вольте, питая к нему, видимо, не только глубокое уважение, но и сердечную привязанность. Когда первооткрыватель нового источника электрической энергии хотел оставить университетскую кафедру, то Наполеон сказал: «.добрый генерал должен умереть на поле чести», - и просил передать Вольте, что если чтение лекций отвлекает его от исследовательской работы, то «.если хочет, пусть читает одну лекцию в год». Вольта остался в университете.
♦ В 1821 г. немецким физиком Т. Зеебеком был изобретен еще один источник тока - термоэлектрический. Оказалось, что, нагревая теплом руки, пламени свечи или керосиновой лампы спай двух проволочек из разных металлов, можно получить заметное электрическое напряжение. Сам Вольта скромно именовал свое изобретение «искусственным электрическим органом» и предложил в честь Гальвани называть электрохимические батарейки «гальваническими элементами». Вольта подал своим многочисленным потомкам в науке пример, достойный подражания. И не потому ли так часто до сих пор используется термин гальванические элементы, который давно уже пишется без кавычек.
♦ Первый важный закон электричества был установлен французским физиком Шарлем Кулоном в 1785 г. - задолго до изобретения гальванических элементов. Формулировкой закон Кулона удивительно напоминает закон всемирного тяготения: сила взаимодействия двух точечных неподвижных тел в вакууме прямо пропорциональна произведению их зарядов и обратно пропорциональна квадрату расстояния между ними. Как же сумел Кулон открыть этот точный физический закон, практически не обладая привычным нам лабораторным оборудованием?
♦ Использованный прием лишний раз доказывает, что изобретательность человеческого ума не знает границ. Расстояние и силу взаимодействия между зарядами французский ученый определял с помощью тех же крутильных весов, которыми пользовался Кавендиш для исследования силы тяготения между двумя телами. А как Кулон (с помощью какого прибора) сумел найти величину зарядов? Он просто этого не делал, справедливо решив, что для его исследований не нужно знать абсолютную величину электрического заряда, достаточно иметь два одинаковых или определить, во сколько раз один заряд больше другого. Зарядив один металлический шарик трением о сухую ткань, можно поднести к нему другой, незаряженный: при соприкосновении двух шариков заряды должны разделиться поровну между ними. Если к одному из них будет поднесен шарик из того же металла, то от первоначального заряда останется только четвертая часть. Вот так, остроумно и легко, делил Кулон электрические заряды на равные части, что и позволило ему открыть закон, который подтвердили точнейшие современные измерения!
♦ Следует вспомнить, что все это происходило в те далекие времена, когда большинство ученых разделяли электричество на два вида: стеклянное и смоляное. Основание было очень «серьезным»: стеклянная палочка, потертая о шелк, притягивалась к янтарю, который электризовали с помощью меховой шкурки, но две заряженные стеклянные палочки отталкивались друг от друга! Значит, существуют два типа зарядов: отрицательные, «любящие» янтарную смолу, и положительные, оседающие на стекле. Опыты Кулона тоже, казалось бы, подтверждали такой вывод: шарики, заряженные разными способами, вели себя подобно стеклянным палочкам и кусочкам янтаря.
♦ Как показали экспериментальные исследования английских ученых, микроорганизмы, обитающие в воде плавательных бассейнов, уничтожаются гораздо интенсивнее, если перед введением в воду хлора предварительно обработать ее магнитным полем. Их опыты проводились так. Два аквариума вместимостью 25 л были наполнены водой из бассейна. Один из них служил контрольным, а в другой вода попадала, пройдя сначала через трубу с закрепленными на ней тремя постоянными магнитами. Проанализировав пробу этой воды и сравнив ее с контрольной, исследователи установили, что омагниченная вода сама по себе не оказала на микроорганизмы никакого действия. Но когда в нее добавили хлор в такой же концентрации, как в контрольном аквариуме, то кишечных палочек оказалось на треть меньше. Кроме того, уровень содержания хлора падал в обычной воде на 20% быстрее, чем в омагниченной. Сейчас ученые выясняют причину этих явлений.
♦ Эксперименты французских ученых показали, что импульсным магнитным полем можно стерилизовать пищевые продукты. Интенсивное магнитное поле, проникая через стеклянную, картонную и пластиковую упаковку, уничтожает микроорганизмы либо делает их неактивными. Причины такого действия пока неизвестны. Вкус и пищевая ценность продуктов при этом не страдают, а срок хранения в герметичной таре значительно увеличивается.
Отец. Как определить направления вектора магнитной индукции? (Ответ с места.)
3-й умник. Предлагаю продолжить экскурс в историю открытия.
♦ Девятнадцатый век, видимо, в назидание двадцатому, веку узкой научной специализации, перенимает прекрасную традицию восемнадцатого и оставляет нам память об удивительно разносторонних ученых.
Ханс Кристиан Эрстед получил золотую медаль при окончании Копенгагенского университета за литературное эссе «Границы поэзии и прозы», представив одновременно химическое исследование о свойствах щелочей. Диссертация, за которую Эрстед был удостоен звания доктора философии, посвящена медицине, свои самостоятельные исследования он начал в университете на кафедре фармацевтики, где изучали лекарства, а стал профессором по кафедре физики. Возникновение тепла при прохождении тока от гальванических элементов через тонкую платиновую проволочку не давало Эрстеду покоя. «Электричество и тепло взаимосвязаны, - думал он, - но, возможно, имеется нечто общее между другими разнородными и внешне непохожими явлениями, например между электричеством и магнетизмом?» Говорят, чтобы постоянно помнить об этой проблеме, Эрстед все время носил в кармане небольшой магнит.
В 1813 г. Эрстед пишет в своем труде «Исследование идентичности химических и электрических сил», вышедшем из печати во Франции: «Следует испробовать, не производит ли электричество. каких-либо действий на магнит.» Проходит семь лет. Весной 1820 г. Эрстед впервые замечает, что при прохождении электрического тока лежащая рядом с проводом магнитная стрелка начинает отклоняться. После семи лет обдумываний следуют три недели лихорадочных экспериментов. Обнаруживается, что на повороты стрелки влияет ее удаленность от провода и электрическое напряжение гальванического элемента; материал провода значения не имеет. Эрстед отмечает странную вещь: сила, действующая между магнитом и электрическим током, направлена не по прямой, соединяющей их, а перпендикулярно к ней! Вскоре он разошлет ведущим ученым Европы статью на четырех страничках, называемую, по обычаю того времени, мемуаром, в которой опишет свои опыты. В мемуаре Эрстеда найдет отражение и тонкое наблюдение, что «магнитный эффект электрического тока имеет круговое движение вокруг него». Будто провод окольцован магнитными силами.
♦ Ученый секретарь Французской академии наук Франсуа Араго знакомится с опытами Эрстеда в Женеве и 4 сентября 1820 г. делает в Париже на заседании Академии устное сообщение о них. Опыты Эрстеда поразили Араго. Ведь он сам уже много лет собирает сведения о связи атмосферных электрических явлений с поведением магнитных веществ и готовится ставить лабораторные эксперименты по проверке своих предположений. Участвуя в работе экспертной комиссии по выяснению причин кораблекрушений, Араго замечал, что у кораблей после сильного шторма на море стрелки компасов показывали в разные стороны, а железные предметы на борту сильно намагничивались. Вызвать это могла только молния.
Волнение Араго передалось членам академии. Они просят Араго на заседании, намеченном на 22 сентября 1820 г., продемонстрировать им опыты Эрстеда. Внимательно слушает Араго выдающийся математик Андре Мари Ампер. У него рождается проницательная мысль: если проводник тока всегда окружен магнитными силами, то «электрический конфликт» (пользуясь выражением Эрстеда) должен возникать не только между проводом и магнитной стрелкой, но и между двумя проводами, по которым течет ток! В течение этого знаменательного заседания глубокий теоретик превращается в увлеченного экспериментатора. За семь дней Ампер конструирует оригинальный электрический прибор и на следующих заседаниях академии, 11 и 18 сентября, демонстрирует присутствующим взаимодействие двух проводников с током! Если в обоих проводниках электрические токи текут параллельно друг другу в одном направлении, то они притягиваются; эти же проводники отталкиваются, когда токи в них проходят во взаимно противоположных направлениях. Затем Ампер выведет простую формулу, которая позволит рассчитать силу взаимодействия двух проводников в том случае, когда они установлены под углом друг к другу. Формула будет названа впоследствии законом Ампера.
Ампер продолжает свои опыты. Свернув проводники в виде двух спиралей, получивших название соленоидов, он доказывает, что соленоиды, установленные рядом, при пропускании тока ведут себя подобно двум магнитам. Ампер исследует влияние магнитного поля Земли на движение проводника, соленоида и металлической рамки с током.
Он высказывает опережающую время мысль о том, что магнит, в свою очередь, представляет собой совокупность токов. В магните, считает Ампер, есть множество элементарных круговых токов, текущих перпендикулярно к его оси. Так и кажется, что французский ученый уже знает о непрерывном движении заряженных частиц внутри каждого вещества, об открытии электрона, о планетарном строении атома, доказанном Резерфордом через столетие. Свои сообщения на заседании академии Ампер заключил словами: «В связи с этим я свел все магнитные явления к чисто электрическим эффектам».
♦ Пройдет много лет, и открытия Ампера лягут в основу метода определения единицы электрического тока. На IX Международной конференции по мерам и весам в 1948 г. будет решено считать основной электрической единицей 1 ампер - силу тока, при которой два параллельных проводника длиной в 1 м взаимодействуют друг с другом с силой в 0,000 000 2 Н. От силы тока 1 ампер произойдет единица количества электричества, названная кулоном, единица напряжения, которая получит наименование вольта, единица сопротивления, именуемая омом.
© 2017, АСЕЕВ ИГОРЬ ГРИГОРЬЕВИЧ 328