СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

2022 ЕГЭ Май Информатика Вариант 1

Категория: Информатика

Нажмите, чтобы узнать подробности

Задание 1 № 28678

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что длина дороги АГ больше, чем длина дороги ВГ. Определите длину дороги БЖ. В ответе запишите целое число — длину дороги в километрах.

2. Задание 2 № 10466

Каждое из логических выражений F и G содержит 5 переменных. В таблицах истинности выражений F и G есть ровно 5 одинаковых строк, причём ровно в 4 из них в столбце значений стоит 1.

Сколько строк таблицы истинности для выражения F ∨ G содержит 1 в столбце значений?

3. Задание 3 № 37481

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

 

3.xlsx

 

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

 

ID операции Дата ID магазина Артикул Тип операции Количество упаковок, шт. Цена, руб./шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

 

Артикул Отдел Наименование Ед. изм. Количество в упаковке Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

 

ID магазина Район Адрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, сколько килограмм паштета из куриной печени было продано в магазинах Заречного района за период с 1 по 10 июня включительно.

В ответе запишите только число.

4. Задание 4 № 18553

По каналу связи передаются сообщения, содержащие только восемь букв: А, В, Е, З, И, Н, О, Р. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 101, В — 010, И — 00. Какое наименьшее количество двоичных знаков потребуется для кодирования слова НЕВЕЗЕНИЕ?

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

5. Задание 5 № 18785

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если число чётное, то к двоичной записи числа слева дописывается 1, а справа 0. Например, для исходного числа 1002 результатом будет являться число 11000;

б) если число нечётное, то к двоичной записи числа слева дописывается 11 и справа дописывается 11.

Полученная таким образом запись является двоичной записью искомого числа R.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число, большее, чем 52. В ответе запишите это число в десятичной системе счисления.

6. Задание 6 № 27403

Определите, при каком наибольшем введённом значении переменной s программа выведет число 64. Для Вашего удобства программа представлена на четырёх языках программирования.

 

 

 

Си++ Python

#include <iostream>

using namespace std;

int main() {

    int s, n;

    cin >> s;

    s = s / 10;

    n = 1 ;

    while (s < 51) {

        s = s + 5;

        n = n * 2;

    }

    cout << n << endl;

    return 0;

}

 

s = int(input())

s = s // 10

n = 1

while s < 51:

    s = s + 5

    n = n * 2

print(n)

 

 

Паскаль Алгоритмический язык

var s, n: integer;

begin

    readln (s);

    s := s div 10;

    n := 1;

    while s < 51 do

    begin

        s := s + 5;

        n := n * 2

    end;

    writeln(n)

end.

 

алг

нач

    цел n, s

    ввод s

    s := div( s, 10)

    n := 1

    нц пока s < 51

        s := s + 5

        n := n * 2

    кц

    вывод n

кон

 

 

7. Задание 7 № 18557

Для хранения в информационной системе документы сканируются с разрешением 600 dpi и цветовой системой, содержащей 224 = 16 777 216 цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 12 Мбайт. В целях экономии было решено перейти на разрешение 300 dpi и цветовую систему, содержащую 216 = 65 536 цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?

8. Задание 8 № 18558

Иван составляет 5-буквенные коды из букв И, В, А, Н. Буквы в коде могут повторяться, использовать все буквы не обязательно, но букву И нужно использовать хотя бы один раз. Сколько различных кодов может составить Иван?

9. Задание 9 № 35467

Электронная таблица содержит результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Определите, сколько раз за время измерений результат очередного измерения оказывался выше результата предыдущего на 2 и более градусов.

 

Задание 9

 

10. Задание 10 № 27586

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «чёрт» или «Чёрт» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «чёрт», такие как «чёрта» и т. д., учитывать не следует. В ответе укажите только число.

 

Задание 10

 

11. Задание 11 № 18819

Сотрудникам компании выдают электронную карту, на которой записаны их личный код, номер подразделения (целое число от 1 до 1200) и дополнительная информация. Личный код содержит 17 символов и может включать латинские буквы из 26-символьного латинского алфавита (заглавные и строчные буквы различаются), десятичные цифры и специальные знаки из набора @#$%^&*(). Для хранения кода используется посимвольное кодирование, все символы кодируются одинаковым минимально возможным количеством битов, для записи кода отводится минимально возможное целое число байтов. Номер подразделения кодируется отдельно и занимает минимально возможное целое число байтов. Известно, что на карте хранится всего 48 байтов данных. Сколько байтов занимает дополнительная информация?

12. Задание 12 № 16443

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (vw).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (vw) не меняет эту строку.

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

 

Цикл

ПОКА условие

    последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

 

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 84 единиц?

 

НАЧАЛО

    ПОКА нашлось (11111)

        заменить (222, 1)

        заменить (111, 2)

    КОНЕЦ ПОКА

КОНЕЦ

13. Задание 13 № 27300

На рисунке — схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П. Сколько существует различных путей из пункта А в пункт П, проходящих через пункт Г или через пункт Е, но не через оба этих пункта?

14. Задание 14 № 2329

Укажите наименьшее основание системы счисления, в которой запись числа 50 трехзначна.

15. Задание 15 № 13745

Для какого наибольшего целого числа А формула

 

((x ≤ 9) →(x ⋅ x ≤ A)) ⋀ ((y ⋅ y ≤ A) → (y ≤ 9))

 

тождественно истинна, то есть принимает значение 1 при любых целых неотрицательных x и y?

16. Задание 16 № 15823

Ниже на пяти языках программирования записан рекурсивный алгоритм F.

 

 

 

 

Бейсик Python

SUB F(n)

    IF n > 0 THEN

         F(n \ 3)

         PRINT N

         F(n − 3)

    END IF

END SUB

 

 

def F(n):

    if n > 0:

        F(n // 3)

        print(n)

        F(n − 3)

 

 

 

Паскаль Алгоритмический язык

procedure F(n: integer);

begin

    if n > 0 then begin

        F(n div 3);

        write(n);

        F(n − 3);

    end

end;

 

 

 

алг F(цел n)

нач

    если n > 0 то

        F(div(n,3))

        вывод n

        F(n − 3)

    все

кон

 

 

С++

void F (int n)

{

     if (n > 0) {

        F (n / 3);

        std::cout << n;

        F (n − 3);

    }

}

 

 

 

 

Запишите подряд без пробелов и разделителей все числа, которые будут напечатаны на экране при выполнении вызова F(9). Числа должны быть записаны в том же порядке, в котором они выводятся на экран.

17. Задание 17 № 39763

Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек чисел таких, которые могут являться сторонами остроугольного треугольника. В ответе запишите два числа: сначала количество найденных троек, а затем — максимальную сумму элементов таких троек. Если таких троек не найдётся — следует вывести 0 0.

 

Задание 17

 

Ответ:

 

18. Задание 18 № 35476

Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо, вниз или по диагонали вправо вниз. Выходить за пределы квадрата робот не может. Необходимо переместить робота в правый нижний угол так, чтобы сумма чисел в клетках, через которые прошёл робот (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

 

Задание 18

 

Пример входных данных (для таблицы размером 4 × 4):

 

 

4 21 −36 11
37 −12 29 7
−30 24 −1 −5
8 −8 9 21

 

Для указанных входных данных ответом будет число 95 (робот проходит через клетки с числами 4, 37, 24, 9, 21).

19. Задание 19 № 27768

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень, увеличить количество камней в первой куче в два раза или увеличить количество камней во второй куче в три раза. Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 27). Чтобы делать

ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 84. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 84 или больше камней.

В начальный момент в первой куче было 16 камней, во второй куче — S камней, 1 ≤ S ≤ 67.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, т.е не гарантирующие выигрыш независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

20. Задание 20 № 27769

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень, увеличить количество камней в первой куче в два раза или увеличить количество камней во второй куче в три раза. Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 27). Чтобы делать

ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 84. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 84 или больше камней.

В начальный момент в первой куче было 16 камней, во второй куче — S камней, 1 ≤ S ≤ 67.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, т.е не гарантирующие выигрыш независимо от игры противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21. Задание 21 № 27770

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень, увеличить количество камней в первой куче в два раза или увеличить количество камней во второй куче в три раза. Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 27). Чтобы делать

ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 84. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 84 или больше камней.

В начальный момент в первой куче было 16 камней, во второй куче — S камней, 1 ≤ S ≤ 67.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, т.е не гарантирующие выигрыш независимо от игры противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22. Задание 22 № 13577

Ниже на пяти языках программирования записан алгоритм. Получив на вход число x, этот алгоритм печатает число M. Известно, что x > 100. Укажите наименьшее такое (т. е. большее 100) число x, при вводе которого алгоритм печатает 30.

 

 

 

Бейсик Python

DIM X, L, M AS INTEGER

INPUT X

L = 2*X-30

M = 2*X+30

WHILE L <> M

  IF L > M THEN

    L = L - M

  ELSE

    M = M - L

  END IF

WEND

PRINT M

 

x = int(input())

L = 2*x-30

M = 2*x+30

while L != M:

  if L > M:

    L = L - M

  else:

    M = M - L

print(M)

 

 

Паскаль Алгоритмический язык

var x, L, M: integer;

begin

  readln(x);

  L := 2*x-30;

  M := 2*x+30;

  while L <> M do begin

    if L > M then

      L := L - M

    else

      M := M - L;

  end;

  writeln(M);

end.

 

алг

нач

  цел x, L, M

  ввод x

  L := 2*x-30

  M := 2*x+30

  нц пока L <> M

    если L > M

      то

        L := L - M

      иначе

        M := M - L

    все

  кц

  вывод M

кон

 

Си++

#include <iostream>

using namespace std;

int main()

{

  int x, L, M;

  cin >> x;

  L = 2*x-30;

  M = 2*x+30;

  while (L != M) {

    if (L > M)

      L = L - M;

    else

      M = M - L;

  }

  cout « M « endl;

  return 0;

}

 

 

23. Задание 23 № 15932

Исполнитель РазДваТри преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера:

1. Прибавить 1

2. Умножить на 2

3. Умножить на 3

Первая команда увеличивает число на экране на 1, вторая умножает его на 2, третья умножает его на 3.

Программа для исполнителя РазДваТри — это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 2 в число 44 и при этом траектория вычислений содержит число 13 и не содержит числа 29?

Траектория вычислений — это последовательность результатов выполнения всех команд программы. Например, для программы 312 при исходном числе 6 траектория будет состоять из чисел 18, 19, 38.

24. Задание 24 № 35482

Текстовый файл содержит строки различной длины. Общий объём файла не превышает 1 Мбайт. Строки содержат только заглавные буквы латинского алфавита (ABC…Z).

Необходимо найти строку, содержащую наименьшее количество букв G (если таких строк несколько, надо взять ту, которая находится в файле раньше), и определить, какая буква встречается в этой строке чаще всего. Если таких букв несколько, надо взять ту, которая позже стоит в алфавите.

Пример. Исходный файл:

 

GIGA

GABLAB

AGAAA

 

В этом примере в первой строке две буквы G, во второй и третьей — по одной. Берём вторую строку, т. к. она находится в файле раньше. В этой строке чаще других встречаются буквы A и B (по два раза), выбираем букву B, т. к. она позже стоит в алфавите. В ответе для этого примера надо записать B.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

 

Задание 24

 

25. Задание 25 № 35483

 

Найдите все натуральные числа, принадлежащие отрезку [35 000 000; 40 000 000], у которых ровно пять различных нечётных делителей (количество чётных делителей может быть любым). В ответе перечислите найденные числа в порядке возрастания.

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

26. Задание 26 № 28140

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

 

Задание 26

 

В первой строке входного файла находятся два числа: S — размер свободного места на диске (натуральное число, не превышающее 10 000) и N — количество пользователей (натуральное число, не превышающее 4000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

 

27. Задание 27 № 35485

В текстовом файле записан набор натуральных чисел, не превышающих 108. Гарантируется, что все числа различны. Из набора нужно выбрать три числа, сумма которых делится на 3. Какую наибольшую сумму можно при этом получить?

Входные данные.

 

Файл A

Файл B

 

Первая строка входного файла содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число.

Пример входного файла:

4

5

8

14

11

В данном случае есть четыре подходящие тройки: 5, 8, 11 (сумма 24); 5, 8 14 (сумма 27); 5, 14 11 (сумма 30) и 8, 14, 11 (сумма 33). В ответе надо записать число 33.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.

 

Ответ: 

Просмотр содержимого документа
«2022 ЕГЭ Май Информатика Вариант 1»

Задание 1 № 28678

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что длина дороги АГ больше, чем длина дороги ВГ. Определите длину дороги БЖ. В ответе запишите целое число — длину дороги в километрах.

2. Задание 2 № 10466

Каждое из логических выражений F и G содержит 5 переменных. В таблицах истинности выражений F и G есть ровно 5 одинаковых строк, причём ровно в 4 из них в столбце значений стоит 1.

Сколько строк таблицы истинности для выражения F ∨ G содержит 1 в столбце значений?

3. Задание 3 № 37481

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

3.xlsx

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

ID операции

Дата

ID магазина

Артикул

Тип операции

Количество упаковок,
шт.

Цена,
руб./шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

Артикул

Отдел

Наименование

Ед. изм.

Количество
в упаковке

Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

ID магазина

Район

Адрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, сколько килограмм паштета из куриной печени было продано в магазинах Заречного района за период с 1 по 10 июня включительно.

В ответе запишите только число.

4. Задание 4 № 18553

По каналу связи передаются сообщения, содержащие только восемь букв: А, В, Е, З, И, Н, О, Р. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 101, В — 010, И — 00. Какое наименьшее количество двоичных знаков потребуется для кодирования слова НЕВЕЗЕНИЕ?

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

5. Задание 5 № 18785

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1. Строится двоичная запись числа N.

2. Далее эта запись обрабатывается по следующему правилу:

а) если число чётное, то к двоичной записи числа слева дописывается 1, а справа 0. Например, для исходного числа 1002 результатом будет являться число 11000;

б) если число нечётное, то к двоичной записи числа слева дописывается 11 и справа дописывается 11.

Полученная таким образом запись является двоичной записью искомого числа R.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число, большее, чем 52. В ответе запишите это число в десятичной системе счисления.

6. Задание 6 № 27403

Определите, при каком наибольшем введённом значении переменной s программа выведет число 64. Для Вашего удобства программа представлена на четырёх языках программирования.

Си++

Python

#include

using namespace std;

int main() {

    int s, n;

    cin s;

    s = s / 10;

    n = 1 ;

    while (s

        s = s + 5;

        n = n * 2;

    }

    cout

    return 0;

}

s = int(input())

s = s // 10

n = 1

while s

    s = s + 5

    n = n * 2

print(n)

Паскаль

Алгоритмический язык

var s, n: integer;

begin

    readln (s);

    s := s div 10;

    n := 1;

    while s

    begin

        s := s + 5;

        n := n * 2

    end;

    writeln(n)

end.

алг

нач

    цел n, s

    ввод s

    s := div( s, 10)

    n := 1

    нц пока s

        s := s + 5

        n := n * 2

    кц

    вывод n

кон

7. Задание 7 № 18557

Для хранения в информационной системе документы сканируются с разрешением 600 dpi и цветовой системой, содержащей 224 = 16 777 216 цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 12 Мбайт. В целях экономии было решено перейти на разрешение 300 dpi и цветовую систему, содержащую 216 = 65 536 цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?

8. Задание 8 № 18558

Иван составляет 5-буквенные коды из букв И, В, А, Н. Буквы в коде могут повторяться, использовать все буквы не обязательно, но букву И нужно использовать хотя бы один раз. Сколько различных кодов может составить Иван?

9. Задание 9 № 35467

Электронная таблица содержит результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Определите, сколько раз за время измерений результат очередного измерения оказывался выше результата предыдущего на 2 и более градусов.

Задание 9

10. Задание 10 № 27586

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «чёрт» или «Чёрт» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «чёрт», такие как «чёрта» и т. д., учитывать не следует. В ответе укажите только число.

Задание 10

11. Задание 11 № 18819

Сотрудникам компании выдают электронную карту, на которой записаны их личный код, номер подразделения (целое число от 1 до 1200) и дополнительная информация. Личный код содержит 17 символов и может включать латинские буквы из 26-символьного латинского алфавита (заглавные и строчные буквы различаются), десятичные цифры и специальные знаки из набора @#$%^&*(). Для хранения кода используется посимвольное кодирование, все символы кодируются одинаковым минимально возможным количеством битов, для записи кода отводится минимально возможное целое число байтов. Номер подразделения кодируется отдельно и занимает минимально возможное целое число байтов. Известно, что на карте хранится всего 48 байтов данных. Сколько байтов занимает дополнительная информация?

12. Задание 12 № 16443

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А) заменить (vw).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (vw) не меняет эту строку.

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

 

Цикл

ПОКА условие

    последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

 

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 84 единиц?

 

НАЧАЛО

    ПОКА нашлось (11111)

        заменить (222, 1)

        заменить (111, 2)

    КОНЕЦ ПОКА

КОНЕЦ

13. Задание 13 № 27300

На рисунке — схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П. Сколько существует различных путей из пункта А в пункт П, проходящих через пункт Г или через пункт Е, но не через оба этих пункта?

14. Задание 14 № 2329

Укажите наименьшее основание системы счисления, в которой запись числа 50 трехзначна.

15. Задание 15 № 13745

Для какого наибольшего целого числа А формула

((x ≤ 9) →(x ⋅ x ≤ A)) ⋀ ((y ⋅ y ≤ A) → (y ≤ 9))

тождественно истинна, то есть принимает значение 1 при любых целых неотрицательных x и y?

16. Задание 16 № 15823

Ниже на пяти языках программирования записан рекурсивный алгоритм F.

 

Бейсик

Python

SUB F(n)

    IF n 0 THEN

         F(n \ 3)

         PRINT N

         F(n − 3)

    END IF

END SUB

 

def F(n):

    if n 0:

        F(n // 3)

        print(n)

        F(n − 3)

 

Паскаль

Алгоритмический язык

procedure F(n: integer);

begin

    if n 0 then begin

        F(n div 3);

        write(n);

        F(n − 3);

    end

end;

 

алг F(цел n)

нач

    если n 0 то

        F(div(n,3))

        вывод n

        F(n − 3)

    все

кон

 

С++

void F (int n)

{

     if (n 0) {

        F (n / 3);

        std::cout

        F (n − 3);

    }

}

 

 

Запишите подряд без пробелов и разделителей все числа, которые будут напечатаны на экране при выполнении вызова F(9). Числа должны быть записаны в том же порядке, в котором они выводятся на экран.

17. Задание 17 № 39763

Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек чисел таких, которые могут являться сторонами остроугольного треугольника. В ответе запишите два числа: сначала количество найденных троек, а затем — максимальную сумму элементов таких троек. Если таких троек не найдётся — следует вывести 0 0.

Задание 17

Ответ:

 

18. Задание 18 № 35476

Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо, вниз или по диагонали вправо вниз. Выходить за пределы квадрата робот не может. Необходимо переместить робота в правый нижний угол так, чтобы сумма чисел в клетках, через которые прошёл робот (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4 × 4):

 

4

21

−36

11

37

−12

29

7

−30

24

−1

−5

8

−8

9

21

 

Для указанных входных данных ответом будет число 95 (робот проходит через клетки с числами 4, 37, 24, 9, 21).

19. Задание 19 № 27768

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень, увеличить количество камней в первой куче в два раза или увеличить количество камней во второй куче в три раза. Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 27). Чтобы делать

ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 84. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 84 или больше камней.

В начальный момент в первой куче было 16 камней, во второй куче — S камней, 1 ≤ S ≤ 67.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, т.е не гарантирующие выигрыш независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

20. Задание 20 № 27769

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень, увеличить количество камней в первой куче в два раза или увеличить количество камней во второй куче в три раза. Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 27). Чтобы делать

ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 84. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 84 или больше камней.

В начальный момент в первой куче было 16 камней, во второй куче — S камней, 1 ≤ S ≤ 67.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, т.е не гарантирующие выигрыш независимо от игры противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21. Задание 21 № 27770

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень, увеличить количество камней в первой куче в два раза или увеличить количество камней во второй куче в три раза. Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 27). Чтобы делать

ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 84. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 84 или больше камней.

В начальный момент в первой куче было 16 камней, во второй куче — S камней, 1 ≤ S ≤ 67.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, т.е не гарантирующие выигрыш независимо от игры противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22. Задание 22 № 13577

Ниже на пяти языках программирования записан алгоритм. Получив на вход число x, этот алгоритм печатает число M. Известно, что x 100. Укажите наименьшее такое (т. е. большее 100) число x, при вводе которого алгоритм печатает 30.

Бейсик

Python

DIM X, L, M AS INTEGER

INPUT X

L = 2*X-30

M = 2*X+30

WHILE L M

  IF L M THEN

    L = L - M

  ELSE

    M = M - L

  END IF

WEND

PRINT M

x = int(input())

L = 2*x-30

M = 2*x+30

while L != M:

  if L M:

    L = L - M

  else:

    M = M - L

print(M)

Паскаль

Алгоритмический язык

var x, L, M: integer;

begin

  readln(x);

  L := 2*x-30;

  M := 2*x+30;

  while L M do begin

    if L M then

      L := L - M

    else

      M := M - L;

  end;

  writeln(M);

end.

алг

нач

  цел x, L, M

  ввод x

  L := 2*x-30

  M := 2*x+30

  нц пока L M

    если L M

      то

        L := L - M

      иначе

        M := M - L

    все

  кц

  вывод M

кон

Си++

#include

using namespace std;

int main()

{

  int x, L, M;

  cin x;

  L = 2*x-30;

  M = 2*x+30;

  while (L != M) {

    if (L M)

      L = L - M;

    else

      M = M - L;

  }

  cout « M « endl;

  return 0;

}

23. Задание 23 № 15932

Исполнитель РазДваТри преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера:

1. Прибавить 1

2. Умножить на 2

3. Умножить на 3

Первая команда увеличивает число на экране на 1, вторая умножает его на 2, третья умножает его на 3.

Программа для исполнителя РазДваТри — это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 2 в число 44 и при этом траектория вычислений содержит число 13 и не содержит числа 29?

Траектория вычислений — это последовательность результатов выполнения всех команд программы. Например, для программы 312 при исходном числе 6 траектория будет состоять из чисел 18, 19, 38.

24. Задание 24 № 35482

Текстовый файл содержит строки различной длины. Общий объём файла не превышает 1 Мбайт. Строки содержат только заглавные буквы латинского алфавита (ABC…Z).

Необходимо найти строку, содержащую наименьшее количество букв G (если таких строк несколько, надо взять ту, которая находится в файле раньше), и определить, какая буква встречается в этой строке чаще всего. Если таких букв несколько, надо взять ту, которая позже стоит в алфавите.

Пример. Исходный файл:

 

GIGA

GABLAB

AGAAA

 

В этом примере в первой строке две буквы G, во второй и третьей — по одной. Берём вторую строку, т. к. она находится в файле раньше. В этой строке чаще других встречаются буквы A и B (по два раза), выбираем букву B, т. к. она позже стоит в алфавите. В ответе для этого примера надо записать B.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24

25. Задание 25 № 35483

Найдите все натуральные числа, принадлежащие отрезку [35 000 000; 40 000 000], у которых ровно пять различных нечётных делителей (количество чётных делителей может быть любым). В ответе перечислите найденные числа в порядке возрастания.

Ответ:

26. Задание 26 № 28140

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

Задание 26

В первой строке входного файла находятся два числа: S — размер свободного места на диске (натуральное число, не превышающее 10 000) и N — количество пользователей (натуральное число, не превышающее 4000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

27. Задание 27 № 35485

В текстовом файле записан набор натуральных чисел, не превышающих 108. Гарантируется, что все числа различны. Из набора нужно выбрать три числа, сумма которых делится на 3. Какую наибольшую сумму можно при этом получить?

Входные данные.

Файл A

Файл B

Первая строка входного файла содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число.

Пример входного файла:

4

5

8

14

11

В данном случае есть четыре подходящие тройки: 5, 8, 11 (сумма 24); 5, 8 14 (сумма 27); 5, 14 11 (сумма 30) и 8, 14, 11 (сумма 33). В ответе надо записать число 33.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.

 

Ответ: