СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 18.07.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

АЭС. Исследование

Категория: Физика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«АЭС. Исследование»

АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ Выполнил ученик 11 А кл. Чарушников Андрей

АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ

АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ

Выполнил ученик 11 А кл. Чарушников Андрей

Что такое АЭС А́томная электроста́нция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом) (ОПБ-88/97).

Что такое АЭС

  • А́томная электроста́нция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом) (ОПБ-88/97).
Классификация АЭС по виду отпускаемой энергии 1-Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии  2-Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию  3-Атомные станции теплоснабжения (АСТ), вырабатывающие только тепловую энергию

Классификация АЭС по виду отпускаемой энергии

1-Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии

2-Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

3-Атомные станции теплоснабжения (АСТ), вырабатывающие только тепловую энергию

Классификация АЭС по виду отпускаемой энергии Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива  1Реакторы на лёгкой воде  2Графитовые реакторы  3Реакторы на тяжёлой воде Реакторы на быстрых нейтронах Субкритические реакторы, использующие внешние источники нейтронов Термоядерные реакторы

Классификация АЭС по виду отпускаемой энергии

  • Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива

1Реакторы на лёгкой воде

2Графитовые реакторы

3Реакторы на тяжёлой воде

  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы
Принцип работы АЭС Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель подаётся насосами в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из

Принцип работы АЭС

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель подаётся насосами в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из

Схема работы АЭС с (ВВЭР)

Схема работы АЭС с (ВВЭР)

Характеристики ВВЭР-1000 Тепловая мощность реактора - 3000 МВт К. п. д., 33,0 % Давление пара перед турбиной - 60,0 атм Давление в первом контуре - 160,0 атм Температура воды:           - на входе в реактор - 289 °С  - на выходе из реактора - 324 °С Диаметр активной зоны - 3,12 м Высота активной зоны - 3,50 м Диаметр ТВЭЛа -  9,1 мм Число ТВЭЛов в кассете - 312 Загрузка урана - 66 т Среднее обогащение урана -  3,3 - 4,4 % Среднее выгорание топлива – 40 МВт-сут/кг

Характеристики ВВЭР-1000

  • Тепловая мощность реактора - 3000 МВт
  • К. п. д., 33,0 %
  • Давление пара перед турбиной - 60,0 атм
  • Давление в первом контуре - 160,0 атм
  • Температура воды:  
  •         - на входе в реактор - 289 °С
  • - на выходе из реактора - 324 °С
  • Диаметр активной зоны - 3,12 м
  • Высота активной зоны - 3,50 м
  • Диаметр ТВЭЛа -  9,1 мм
  • Число ТВЭЛов в кассете - 312
  • Загрузка урана - 66 т
  • Среднее обогащение урана -  3,3 - 4,4 %
  • Среднее выгорание топлива – 40 МВт-сут/кг
Недостатки атомных станций Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению; Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах; С точки зрения статистики и страхования крупные аварии крайне маловероятны, однако последствия такого инцидента крайне тяжёлые; Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Недостатки атомных станций

  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • С точки зрения статистики и страхования крупные аварии крайне маловероятны, однако последствия такого инцидента крайне тяжёлые;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!