Министерство образования и науки РБ.
ГБОУ «Республиканская кадетская школа - интернат »
Индивидуальный проект на тему:
«Баллистика»
Подготовил: Радостев И.,
ученик 10 класса
Руководитель: Рабдаева В.Д.,
учитель физики
г. Улан – Удэ
2021г.
Паспорт проекта
Название проекта: Баллистика.
Руководитель проекта: Рабдаева В.Д
Автор проекта: Радостев И.П.
Учебная дисциплина: Физика.
Тип проекта: Исследовательская работа.
Цель работы: Мы хотим рассказать про баллистику.
Задачи работы: Изучить баллистическое движение; подтвердить теорию на основе эксперимента; выяснить какое значение имеет баллистика в жизни человека, изготовить модели.
Гипотеза исследования: Баллистика - раздел механики, изучающий движение тел в поле тяжести Земли. Пули, снаряды, мячи все двигаются по баллистическим траекториям.
Краткое содержание проекта: Баллистика — наука о движении тел, брошенных в пространстве, основанная на математике и физике. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.
Результат проекта (продукт): Макет.
Оглавление
ВВЕДЕНИЕ 3
Глава I. Баллистика... Звучит знакомо 6
1.1. История возникновения баллистики 6
1.2. Движение тела, брошенного под углом к горизонту 9
Глава II. Задачи, задачи и ещё раз задачи! 10
2.1 Исследование движения тела, брошенного под углом к горизонту. 10
2.2 Решение задачи 11
Глава III. Заключение 13
Глава IV. Литература 14
ВВЕДЕНИЕ
Механика является наукой о движении, а движение охватывает все происходящее во Вселенной, начиная от простого перемещения и кончая мышлением. По образному выражению академика, «механика - основа познания природы и база творений техники».
На всем протяжении истории науки механика была, есть и будет фундаментом физики, наиболее тесно связанной с окружающим нас миром.
Механика является тем разделом физики, который благодаря строгости и логичности своего построения в сильной степени способствует развитию мышления учащихся. От его усвоения зависит успешность изучения всех разделов курса физики.
Изучая баллистику, учащиеся повторяют основные теоретические положения и законы кинематики, а также исследуют и выводят новые закономерности, которые можно и даже необходимо проверять на опыте.
Лабораторные работы, представленные ниже, дают возможность глубоко исследовать баллистическое движение и основные физические величины его характеризующие, а также мотивируют учащихся к более детальному исследованию аспектов этой и других тем.
Работы предусматривают не только измерение основных величин и подтверждение теории на основе эксперимента, но также и привитие экспериментальных умений. К ним относят не только умения, связанные непосредственно с выполнением эксперимента, но и умения высказывать и обосновывать гипотезы, совместно решать проблемы, выбирать и конструировать способ деятельности, оценивать результаты собственной и коллективной деятельности
Актуальность:
В многочисленных войнах на протяжении всей истории человечества, враждующие стороны, доказывая своё превосходство, использовали сначала камни, копья и стрелы, а затем ядра, пули, снаряды и бомбы. Успех во многом определялся точностью попадания в цель. Однако навыка воина, разрешающей способности его глаза было недостаточно для точного попадания в цель в артиллерийской дуэли первым. Желание побеждать стимулировало появление баллистики, возникновение которой относится к 16 веку.
Довольно часто приходится иметь дело с движением тел, получивших начальную скорость не параллельно силе тяжести, а под некоторым углом к ней или к горизонту. О таком теле говорят, что оно брошено под углом к горизонту. Когда, например, спортсмен толкает ядро, метает диск или копьё, он сообщает этим предметам именно такую начальную скорость. При артиллерийской стрельбе стволам орудий придается некоторый угол возвышения, так что вылетевший снаряд тоже получает начальную скорость, направленную под углом к горизонту.
Пули, снаряды и бомбы, теннисный и футбольный мячи, и ядро легкоатлета, при полёте движутся по баллистической траектории. На уроках физкультуры мы сталкиваемся с баллистическим движением: при метании спортивных снарядов, при игре в баскетбол, футбол, волейбол, бадминтон, прыжках в длину и высоту и т.д.
Поэтому я решил более подробно изучить теорию баллистического движения, выяснить, какие параметры баллистического движения необходимо знать, чтобы увеличить точность попадания в цель.
Цель работы: Изучение баллистического движения на уроках физики у нас вызвало большой интерес. Но, к сожалению, эта тема в учебнике нам дана поверхностно, и мы в серьёз решили заинтересоваться ей. Мы хотим рассказать про баллистику как науку, показать баллистическое движение в практической части.
Задачи:
изучить баллистическое движение;
подтвердить теорию на основе эксперимента;
выяснить какое значение имеет баллистика в жизни человека, изготовить модели.
Гипотеза исследования: Баллистика - раздел механики, изучающий движение тел в поле тяжести Земли. Пули, снаряды, мячи все двигаются по баллистическим траекториям.
Практическая значимость: Изучение баллистического движения имеет большое практическое значение:
- в спорте: для вратаря, выбивающего мяч от ворот, при метании гранаты, прыжки в высоту и длину, прыжки с трамплина;
- для пожарного направляющего струю воды на крышу дома;
- для военных: при запуске баллистических ракет, мин, снарядов, пуль.
Используя законы кинематики, установленные Галилео Галилеем можно определить дальность и высоту полёта, время движения и угол наклона к горизонту.
Глава I. Баллистика... Звучит знакомо
Баллистика (от греч. “ballo” — бросать, метать) — наука о движении тел, брошенных в пространстве, основанная на математике и физике. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.
1.1. История возникновения баллистики
В многочисленных войнах на протяжении всей истории человечества враждующие стороны, доказывая своё превосходство, использовали сначала камни, копья, и стрелы, а затем ядра, пули, снаряды, и бомбы. Успех сражения во многом определялся точностью попадания в цель. При этом точный бросок камня, поражение противника летящим копьём или стрелой фиксировались воином визуально. Это позволяло при соответствующей тренировке повторять свой успех в следующем сражении.
Значительно возросшая с развитием техники скорость и дальность полёта снарядов и пуль сделали возможным дистанционные сражения. Однако навыка воина, разрешающей способности его глаза было недостаточно для точного попадания в цель. Поэтому возникла необходимость в создании науки, которая занималась бы изучением движения снарядов, копий и т.п. Мерсенн (французский математик, физик) в 1644 г. предложил назвать науку о движении снаряда – баллистикой.
Основные разделы баллистики: внутренняя баллистика и внешняя баллистика. Внешняя баллистика изучает движение снарядов, мин, пуль, неуправляемых ракет и др. после прекращения их силового взаимодействия со стволом оружия (пусковой установкой), а также факторы, влияющие на это движение. Основные разделы внешней баллистики: изучение сил и моментов, действующих на снаряд в полёте; изучение движения центра масс снаряда для расчета элементов траектории, а также движение снаряда относительно центра масс с целью определения его устойчивости и характеристик рассеивания. Разделами внешней баллистики являются также теория поправок, разработка методов получения данных для составления таблиц стрельбы и внешне баллистическое проектирование. Движение снарядов в особых случаях изучается специальными разделами внешней баллистики: авиационной баллистикой, подводной баллистикой и др.
Внутренняя баллистика изучает движение снарядов, мин, пуль и др. в канале ствола оружия под действием пороховых газов, а также другие процессы, происходящие при выстреле в канале или камере пороховой ракеты. Основные разделы внутренней баллистики: пиростатика, изучающая закономерности горения пороха и газообразования в постоянном объёме; пиродинамика, исследующая процессы в канале ствола при выстреле и устанавливающая связь между ними, конструктивными характеристиками канала ствола и условиями заряжания; баллистическое проектирование орудий, ракет, стрелкового оружия.
Баллистика – прежде всего военно-техническая наука, применяемая в проектировании орудий, ракетных пусковых установок и бомбардировщиков. На базе баллистических расчетов создаются авиабомбы, артиллерийские и ракетные снаряды. Не менее важную роль играет баллистика и в таких отраслях знаний, как проектирование космических кораблей и криминалистика. Научные основы баллистики были заложены в XVI веке.
Первыми объектами, которые создавались на основе строгих законов баллистики, были осадные метательные машины. Они были известны еще с античных времен и широко
применялись вплоть до позднего средневековья (до изобретения пороха и огнестрельного оружия). Одна из таких машин - баллиста - была способна метать камни, бревна и другие предметы массой до 100 кг на расстояние до 400 м (а тяжелые стрелы даже на 1 км). По такому же принципу действовали арбалеты, катапульты, онагры и требушет. Позднее их вытеснила с поля боя артиллерия: пушки, минометы и гаубицы.
К началу ХVII века относятся работы великого учёного Галилея (1564 – 1642 г.) В 1638 г. он предположил, что траектория снаряда является параболой. С этого времени расчёты траекторий производились по формулам параболической теории.
Как самостоятельная, определённая область науки, баллистика получила широкое развитие с середины XIX века. Баллистика многим обязана трудам великих русских математиков Н. И. Лобачевского, П. Л. Чебышева, М. В. Остроградского, замечательным работам воспитанников Михайловской артиллерийской академии А. А. Фадеева, Н. В. Майевского, Н. А. Забудского, В. М. Трофимова, Н. Ф. Дроздоваи др.
До начала ХIХ века баллистикой занимались в различных странах лишь отдельные учёные. С созданием в России в 1820 г. Михайловского артиллерийского училища, преобразованного в 1855 г. в Михайловскую артиллерийскую академию, было положено начало русской артиллерийской школе.
В ХХ веке перед внешней баллистикой возникли новые задачи:
сверхдальняя стрельба.
составление точных баллистических таблиц, содержащих информацию о поправках прицела в соответствии с дистанциями до цели.
В настоящее время применение баллистики в боевых действиях предусматривает расположение системы оружия в таком месте, которое позволяло бы быстро и эффективно
поразить намеченную цель с минимальным риском для обслуживающего персонала.
Доставка ракеты или снаряда к цели обычно разделяется на два этапа. На первом, тактическом, этапе выбирается боевая позиция ствольного оружия и ракет наземного базирования либо положение носителя ракет воздушного базирования. Цель должна находиться в пределах радиуса доставки боезаряда. На этапе стрельбы производится прицеливание и осуществляется стрельба. Для этого необходимо определить точные координаты цели относительно оружия – азимут, возвышение и дальность, а в случае движущейся цели – и ее будущие координаты с учетом времени полета снаряда. Перед стрельбой должны вноситься поправки на изменения начальной скорости, связанные с износом канала ствола, температурой пороха, отклонениями массы снаряда и баллистических коэффициентов, а также поправки на постоянно меняющиеся погодные условия и связанные с ними изменения плотности атмосферы, скорости и направления ветра.
С увеличением сложности и расширением круга задач современной баллистики появились новые технические средства, без которых возможности решения нынешних и будущих баллистических задач были бы сильно ограничены.
1.2. Движение тела, брошенного под углом к горизонту
Довольно часто приходится иметь дело с движением тел, получивших начальную скорость не параллельно силе тяжести, а под некоторым углом к ней (или к горизонту). О таком теле говорят, что оно брошено под углом к горизонту. Когда, например, спортсмен толкает ядро, метает диск или копьё, он сообщает этим предметам именно такую начальную скорость. При артиллерийской стрельбе стволам орудий придается некоторый угол возвышения, так что вылетевший снаряд тоже получает начальную скорость, направленную под углом к горизонту.
На снаряд, вылетевший из ствола с определенной скоростью, в полете действуют две основные силы: сила тяжести и сила сопротивления воздуха. Действие силы тяжести направлено вниз, оно заставляет пулю непрерывно снижаться. Действие силы сопротивления воздуха направлено навстречу движению пули, оно заставляет пулю непрерывно снижать скорость полета. Все это приводит к отклонению траектории вниз.
Реальное движение тел в земной атмосфере происходит по баллистической траектории, существенно отличающейся от параболической из-за наличия условий, таких как: сопротивление воздуха, температура, ветер, влажность, сила Кориолиса и давление воздуха.
Баллистическая траектория – траектория, по которой движется тело, обладающее некоторой начальной скоростью, под действием силы тяготения силы аэродинамического сопротивления воздуха, его влажности, температуры и давления.
Без учёта сопротивления воздуха и прочих условий баллистическая траектория, представляет собой расположенную над поверхностью Земли часть эллипса, один из фокусов которого совпадает с гравитационным центром Земли.
При увеличении скорости движения тела сила сопротивления воздуха возрастает. Чем больше скорость тела, тем больше отличие баллистической траектории от параболы. При движении снарядов и пуль в воздухе максимальная дальность полёта достигается при угле вылета 30° – 40° Расхождение простейшей теории баллистики с экспериментом не означает, что она неверна в принципе. В вакууме или на Луне, где практически нет атмосферы, эта теория даёт правильные результаты.
В настоящее время расчёт баллистической траектории запуска и выведения на требуемую орбиту спутников Земли и их посадки в заданном районе осуществляют с большой точностью мощные компьютерные станции.
Глава II. Задачи, задачи и ещё раз задачи!
2.1 Исследование движения тела, брошенного под углом к горизонту.
При стрельбе на горизонтальной поверхности под различными углами к горизонту
дальность полета снаряда выражается формулой
l = xmax= v02sin2 /g
Из этой формулы следует, что при изменении угла вылета снаряда от 900 до 00 дальность его падения максимальна, когда произведение cosα sinα наибольшее. Эту зависимость в данной работе надо проверить на опыте с помощью баллистического пистолета. Легко убедиться, что максимальная дальность будет при стрельбе под углом в 450, а для двух углов, дающих в сумме 900, дальность полета одинакова.
Данная формула выражает связь между дальностью полета и начальной скоростью снаряда. Если одну из этих величин мы определили экспериментально, то формула позволяет вторую величину вычислить. Это один из возможных подходов к определению начальной скорости.
С другой стороны, если выстрел производится в вертикальном направлении, то, измеряя высоту подъема снаряда Н, можно определить начальную скорость из соотношения:
=√2gH
Необходимо понимать, что начальная скорость зависит только от упругости пружины пистолета, массы шарика и других параметров прибора. При разных углах наклона ствола меняется только направление скорости, но не ее величина. Если величина начальной скорости снаряда известна, было бы интересно убедиться в верности полученных результатов. Движение снаряда описывается соотношениями:
h=y=
sint- gt2/2
t =
sin/g
Где t-время полета снаряда до вершины. Подставляя последнее выражение в формулу для высоты, получим:
h=
sin2 /2g
2.2 Решение задачи
Задача 1
Два мальчика играют в мяч, бросая его друг другу. Какой наибольшей высоты достигнет мяч во время игры, если он от одного игрока к другому летит 2с?
Дано Решение:
t=2 c
g=9.8 м/с2
H-?
Ответ: H = 4.9м
Задача 2
Под каким углом к горизонту брошено с поверхности земли камень, если известно, что дальность его полета в 4 раза больше высоты.
Дано: Решение:
S=4h S=V0xt; Vy=V0y-gt ;t=V0y/g
V0x=V0cosα; V0y=V0sinα;
α-?
cosα = sinα; tgα =1 = α=450
Ответ: α = 450.
Задача 3
Тело брошено под углом 60 градусов к горизонту со скоростью 20 метров в секунду. Под каким углом к горизонту направлено тело через 1,5 секунды.
Дано Решение:
α=600 Vx=V0x=V0cosα Vy=V0y - gt=V0sinα - gt
V0=20м/с
t=1.5c
µ-?
µ= arctg µ=11.30
Ответ: µ =11,30
Глава III. Заключение
Движение является неотъемлемой формой существования вещества во Вселенной. Оно характеризует изменения, происходящие в окружающем нас мире. В движении участвует каждый атом любого тела. Одним из видов равноускоренного движения является баллистическое движение.
Исторически так сложилось, что баллистика возникла как воинская наука, определяющая теоретические основы и практическое применение закономерностей полета снаряда в воздухе и процессов, сообщающих снаряду необходимую кинетическую энергию. Баллистика имеет дело с бросанием (полетом, движением) снаряда (пули), мяча. Без баллистики в военном деле не обойдешься. Без нее невозможно рассчитать и построить современные образцы огнестрельного оружия, без нее невозможно метко стрелять. Артиллерист, не знающий баллистики, подобен землемеру, не знающему геометрии. Он действует наугад и только зря тратит порох. Баллистика нужна и стрелку. Зная законы полета своей пули, он будет уверенно направлять ее в цель.
Применение баллистики в боевых действиях предусматривает расположение системы оружия в таком месте, которое позволяло бы быстро и эффективно поразить намеченную цель с минимальным риском для обслуживающего персонала.
Пули, снаряды и бомбы так, как и теннисный и футбольный мячи, и ядро легкоатлета, при полёте движутся по баллистической траектории. На уроках физкультуры мы сталкиваемся с баллистическим движением: при метании спортивных снарядов, при игре в баскетбол, футбол, волейбол, бадминтон
Экспериментально исследовали зависимость дальности полёта от угла вылета снаряда на баллистических самодельных приборах. И пришли к следующему выводу: с
-19-
увеличением угла вылета снаряда, при одинаковой начальной скорости, дальность полёта уменьшается, а высота увеличивается. Оптимальный угол вылета составляет от 37 до 42 градусов.
Итак, мы проделали огромную и трудную работу по изучению данного явления. Все оказалось не так уж и просто, как на самом деле! Можно считать, что мы выполнили выше поставленные цели и задачи и с успехом завершили свою работу. Теперь мы ближе знакомы с баллистическим движением, с его характеристиками и определенными условиями. Изучая данный вид движения, мы ответили на свои вопросы, которые у нас возникали в ходе урока и теперь мы можем спокойно и разумно рассуждать о правильности и особенностях баллистического движения.
В ходе выполнения работы стоит отметить, что, выполняя данную работу и изобретая модели, показывающие данное движение, мы подходили с особым интересом и любознательностью, в серьез заинтересовавшись им, ведь это такой распространенный вид движения, и в данный момент, он находит себе актуальность и разнообразие в использовании. А также, впоследствии написания исследовательской работы нами была проделана колоссальная работа, а также подробно были рассмотрены некоторые задачи и параметры данного движения.
В целом, я узнал каким же образом при движении пули, снаряда, мяча, при прыжке с трамплина можно попасть в цель и много нового.
В заключении хочется сказать, что я узнал достаточно много нового из курса физики и расширил свой кругозор. Лично на меня, эта работа произвела огромное впечатление, и я получил огромное удовольствие при ее выполнении.
В дальнейшим мы планируем применить полученные знания на уроках физкультуры с целью улучшения результатов в различных видах лёгкой атлетики, спортивных играх.
Без баллистики невозможно рассчитать и построить современные образцы огнестрельного оружия, без неё невозможно метко стрелять. Я будущий военный и поэтому меня интересует данная тема. Артиллерист, не знающий баллистики, подобен землемеру, не знающему геометрии. Он действует наугад и тогда зря тратит боеприпас. Баллистика нужна и стрелку. Зная законы полета своей пули, он будет уверенно направлять ее в цель.
Глава IV. Литература
http://www.referat.ru/
http://www.shooting-ua.com/books/book_111.2.htm
Касьянов В.А. «Физика 10 класс»
Петров В.П. «Управление ракетами»
Жаков А.М. «Управление баллистическими ракетами и космическими объектами»
Уманский С.П. «Космонавтика сегодня и завтра»
Огарков Н.В. «Военный энциклопедический словарь»
http://ru.wikipedia.org/wiki/Баллистика
14