1
Тип 1 № 47205
i
На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).
| П1 | П2 | П3 | П4 | П5 | П6 | П7 |
П1 | | 39 | 3 | | | | |
П2 | 39 | | | 8 | 5 | | |
П3 | 3 | | | | | 2 | |
П4 | | 8 | | | | | 53 |
П5 | | 5 | | | | 21 | 30 |
П6 | | | 2 | | 21 | | 13 |
П7 | | | | 53 | 30 | 13 | |
Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта D в пункт B и из пункта F в пункт A.
В ответе запишите целое число.
Ответ:
2
Тип 2 № 28538
i
Логическая функция F задаётся выражением ((x ∧ y) → (¬z ∨ w)) ∧ ((¬w → x) ∨ ¬y). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
? | ? | ? | ? | F |
1 | | 1 | 1 | 0 |
0 | | | 0 | 0 |
1 | | | | 0 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Ответ:
3
Тип 3 № 37491
i
В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.
3.xlsx
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции | Дата | ID магазина | Артикул | Тип операции | Количество упаковок, шт. | Цена, руб./шт. |
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул | Отдел | Наименование | Ед. изм. | Количество в упаковке | Поставщик |
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, сколько килограмм макарон спагетти поступило в магазины Первомайского района за период с 1 по 10 июня включительно.
В ответе запишите только число.
Ответ:
4
Тип 4 № 33176
i
Для передачи сообщений, составленных из заглавных букв русского алфавита, используется неравномерный двоичный код, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова, назначенные для некоторых букв: Б — 01, В — 001, Е — 0001, Ш — 111. Какое наименьшее количество двоичных знаков может содержать сообщение, кодирующее слово КУКУШКА?
Ответ:
5
Тип 5 № 7751
i
Автомат получает на вход четырёхзначное число. По этому числу строится новое число по следующим правилам:
1. Складываются первая и вторая, а также третья и четвёртая цифры исходного числа.
2. Полученные два числа записываются друг за другом в порядке возрастания (без разделителей).
Пример. Исходное число: 2366. Суммы: 2 + 3 = 5; 6 + 6 = 12. Результат: 512. Укажите наибольшее число, в результате обработки которого автомат выдаст число 117.
Ответ:
6
Тип 6 № 47307
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись
Повтори k [Команда1 Команда2 … КомандаS]
означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:
Повтори 4 [Вперёд 10 Направо 60 Вперёд 10 Направо 120]
Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.
Ответ:
7
Тип 7 № 33179
i
Для хранения в информационной системе документы сканируются с разрешением 300 dpi и цветовой системой, содержащей 216 = 65 536 цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 9 Мбайт. В целях экономии было решено перейти на разрешение 200 dpi и цветовую систему, содержащую 256 цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?
Ответ:
8
Тип 8 № 11346
i
Вася составляет 5-буквенные слова, в которых встречаются только буквы А, Б, В, Г, причём буква А появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Вася?
Ответ:
9
Тип 9 № 27527
i
Откройте файл электронной таблицы, содержащей вещественные числа — результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев.
Задание 9
Сколько раз встречалась температура, которая была ниже среднего арифметического значения округленного до десятых, но выше удвоенного минимального значения?
Ответ:
10
Тип 10 № 27578
i
С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «вы» или «Вы» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «вы» учитывать не следует. В ответе укажите только число.
Задание 10
Ответ:
11
Тип 11 № 13543
i
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 20 символов и содержащий только заглавные буквы латинского алфавита — всего 26 возможных символов. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байтов. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством битов. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байтов; это число одно и то же для всех пользователей. Для хранения сведений о 25 пользователях потребовалось 500 байт. Сколько байтов выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число — количество байтов.
Ответ:
12
Тип 12 № 33184
i
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды
заменить (111, 27)
преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка
исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для редактора:
НАЧАЛО
ПОКА нашлось (111)
заменить (111, 22)
заменить (222, 11)
КОНЕЦ ПОКА
КОНЕЦ
Известно, что исходная строка содержала более 100 единиц и не содержала других цифр. Укажите минимально возможную длину исходной строки, при которой в результате работы этой программы получится строка, содержащая минимально возможное количество единиц.
Ответ:
13
Тип 13 № 28690
i
На рисунке — схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П. Сколько существует различных путей из пункта А в пункт П, проходящих через пункт Г и при этом не проходящих через пункт Е?
Ответ:
14
Тип 14 № 29201
i
Значение выражения 496 · 719 − 79 − 21 записали в системе счисления с основанием 7. Сколько цифр 6 содержится в этой записи?
Ответ:
15
Тип 15 № 13364
i
На числовой прямой даны два отрезка: P = [130; 171] и Q = [150; 185]. Укажите наименьшую возможную длину такого отрезка A, что формула
(x ∈ P) → (((x ∈ Q) ∧ ¬(x ∈ A)) → ¬(x ∈ P))
истинна при любом значении переменной х, т. е. принимает значение 1 при любом значении переменной х.
Ответ:
16
Тип 16 № 33188
i
Обозначим через a mod b остаток от деления натурального числа a на натуральное число b. Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:
F(0) = 0;
F(n) = n + F(n − 3), если n mod 3 = 0, и n 0;
F(n) = n + F(n − (n mod 3)), если n mod 3 0.
Чему равно значение функции F(22)?
Ответ:
17
Тип 17 № 37341
i
В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, разность которых четна и хотя бы одно из чисел делится на 19, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.
17.txt
Ответ:
18
Тип 18 № 27674
i
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
Ответ:
19
Тип 19 № 36032
i
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 5 камней, а в другой 9 камней; такую позицию мы будем обозначать (5, 9). За один ход из позиции (5, 9) можно получить любую из четырёх позиций: (6, 9), (10, 9), (5, 10), (5, 18).
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 107. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 107 или больше камней.
В начальный момент в первой куче было 13 камней, во второй куче — S камней; 1 ≤ S ≤ 93.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна
Ответ:
20
Тип 20 № 36033
i
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 5 камней, а в другой 9 камней; такую позицию мы будем обозначать (5, 9). За один ход из позиции (5, 9) можно получить любую из четырёх позиций: (6, 9), (10, 9), (5, 10), (5, 18).
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 107. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 107 или больше камней.
В начальный момент в первой куче было 13 камней, во второй куче — S камней; 1 ≤ S ≤ 93.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
Ответ:
21
Тип 21 № 36034
i
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 5 камней, а в другой 9 камней; такую позицию мы будем обозначать (5, 9). За один ход из позиции (5, 9) можно получить любую из четырёх позиций: (6, 9), (10, 9), (5, 10), (5, 18).
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 107. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 107 или больше камней.
В начальный момент в первой куче было 13 камней, во второй куче — S камней; 1 ≤ S ≤ 93.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Ответ:
22
Тип 22 № 47594
В файле 22_13.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B | Время выполнения процесса B (мс) | ID процесса(ов) A |
1 | 4 | 0 |
2 | 3 | 0 |
3 | 1 | 1;2 |
4 | 7 | 3 |
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
Ответ:
23
Тип 23 № 13368
i
Исполнитель Плюс преобразует число на экране.
У исполнителя есть две команды, которым присвоены номера:
1. Прибавить 2
2. Прибавить 5
Первая команда увеличивает число на экране на 2, вторая увеличивает это число на 5. Программа для исполнителя Плюс — это последовательность команд.
Сколько существует программ, которые число 1 преобразуют в число 20?
Ответ:
24
Тип 24 № 36037
i
Текстовый файл состоит не более чем из 1 200 000 символов X, Y, и Z. Определите максимальное количество идущих подряд символов, среди которых нет подстроки XZZY. Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.
Задание 24
Ответ:
25
Тип 25 № 36038
i
Пусть M — сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей у числа нет, то считаем значение M равным нулю.
Напишите программу, которая перебирает целые числа, большие 452 021, в порядке возрастания и ищет среди них такие, для которых значение M при делении на 7 даёт в остатке 3. Вывести первые 5 найденных чисел и соответствующие им значения M.
Формат вывода: для каждого из 5 таких найденных чисел в отдельной строке сначала выводится само число, затем — значение М. Строки выводятся в порядке возрастания найденных чисел.
Например, для числа 20 М = 2 + 10 = 12, остаток при делении на 7 не равен 3; для числа 21 М = 3 + 7 = 10, остаток при делении на 7 равен 3.
Количество строк в таблице для ответа избыточно.
Ответ:
26
Тип 26 № 27880
i
Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Входные данные.
Задание 26
В первой строке входного файла находятся два числа: S — размер свободного места на диске (натуральное число, не превышающее 10 000) и N — количество пользователей (натуральное число, не превышающее 4000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.
Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Пример входного файла:
100 4
80
30
50
40
При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера:
2 50
Ответ:
27
Тип 27 № 36040
i
Имеется набор данных, состоящий из троек положительных целых чисел. Необходимо выбрать из каждой тройки ровно одно число так, чтобы сумма всех выбранных чисел не делилась на k = 109 и при этом была максимально возможной. Гарантируется, что искомую сумму получить можно. Программа должна напечатать одно число — максимально возможную сумму, соответствующую условиям задачи.
Входные данные.
Файл A
Файл B
Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество троек N (1 ≤ N ≤ 1 000 000). Каждая из следующих N строк содержит три натуральных числа, не превышающих 20 000.
Пример организации исходных данных во входном файле:
6
1 3 7
5 12 6
6 9 11
5 4 8
3 5 4
1 1 1
Для указанных входных данных, в случае, если k = 5, значением искомой суммы является число 44.
В ответе укажите два числа: сначала значение искомой суммы для файла А,
затем для файла B.
Ответ: