СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Конспект урока по теме: "Определение арифметической прогрессии"

Категория: Алгебра

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Конспект урока по теме: "Определение арифметической прогрессии"»

Алгебра, 9 класс

Урок № 60 02.02.2022

Тема урока: Определение арифметической прогрессии

Цели урока:

  • Расширить знания учащихся о числовых последовательностях, рассмотрев числовую последовательность особого вида – арифметическую прогрессию, вывести формулу n-го члена арифметической прогрессии. Вырабатывать навыки, умения применения формулы n-го члена арифметической прогрессии;

  • Развитие памяти, внимания, интуиции, аналогии, логического мышления. Развитие умений преодолевать трудности при решении математических задач Развитие познавательного интереса учащихся;

  • Способствовать совершенствованию навыков индивидуальной, фронтальной работы.

Тип урока: усвоение новых знаний и умений.

Оборудование: доска, мел, учебник.

Ход урока

  1. Организационный этап

  2. Проверка д/з. Актуализация опорных знаний.

С каким понятием мы познакомились на прошлом уроке?

Выполним тестовые задания с последующей самопроверкой.

Тест№1 Является ли конечной последовательность делителей числа 1500?

а) да б) нет

№2 Является ли бесконечной последовательность кратных числа 8?

а) да б) нет

№3 Запишите последний член последовательности всех трёхзначных чисел

а)78 б)100 в)7424 г)999

№4 Выпишите пять первых членов последовательности двузначных чисел взятых в порядке возрастания

а)7,8,9,10,11

б)11,14,19,21,45

в)10,11,12,13,14

г)99,98,97,96,95

№5 Последовательность (аn) задана формулой аn = 5 n – 2. Найти а10. а) 48 б)21 в)7 г)342

№6 Последовательность (аn) задана формулой аn = 55 - 4 n . Найти номер члена последовательности, равного 15.

а)19 б)2 в)10 г)3

№7 Последовательность (аn) задана формулой аn = n2 -2 n + 3. Является ли число 66 членом последовательности.

а) да б) нет

1

2

3

4

5

6

7

а

а

г

в

а

в

б


Объясните, как вы понимаете, что такое последовательность? Приведите примеры последовательности.

а) последовательность четных положительных чисел 2,4,6,8…

б) последовательность нечетных положительных чисел 3,5,7…

в) дроби с числителем 1 в порядке убывания ½,1/3, ¼,1/5….

Какими могут быть последовательности? Последовательности могут быть конечными и бесконечными.

Как называются числа образующие последовательность? Числа, образующие последовательность называются членами последовательности.

  1. Изучение нового материала.

Назовите номера последовательностей, которые можно объединить в одну группу.(1,3,4)

1) 1; 3; 5; 7; 9…

2) 6; 12; 24; 48; …

3) 2; 7; 12; 17…

4) -16; -13; -10; -7…

5) 50; 25; 5; 1…

По какому признаку вы их объединили? Каждый следующий член последовательности больше предыдущего на одно и то же число.Такие последовательности называются арифметической прогрессией.

  1. Отработка знаний и умений.

  1. Самостоятельная работа.

№ 1. Найдите первый член арифметической прогрессии, двенадцатый член которой равен 5, а разность арифметической прогрессии -3. а)16 б) 46 в) 52 г)38

№ 2. Найти разность арифметической прогрессии, если а1 =16, а8 = 37. а) 5 б)3 в)7 г)14

№ 3. В арифметической прогрессии (b n) b1 = -0,8 и d = 4. Найти b17. а)63,2 б)36,2 в)17,5 г) 23,4

№ 4. В арифметической прогрессии (хn) х1 = 14 и d = 0,5. Найти номер члена прогрессии равного 19. а)6 б) 12 в)9 г)64

  1. Подведение итогов урока