МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ
Федеральное государственное бюджетное образовательное
учреждение высшего образования
Саратовский государственный технический университет
имени Гагарина Ю.А.
Кафедра «Сварка и металлургия»
КОНТРОЛЬНАЯ РАБОТА
По дисциплине:
Технологические среды при сварке
«Стекло»
Выполнил:
Студент б-МНСТипу-31 ИММ
Иванов И.И.
Зачетная книжка № 163125
Проверил:
ассист. Вавилина Н.А.
Саратов 2023
Содержание:
Введение…………………………………………………...................................…2
Строение стекла………………………………………......…............................3
Кристаллохимическое описание строения стекол…...................................…3
Свойства стекол………………………………...............................…………...7
Классификация стекол………………………...............................…………....9
Применение стекол……………………………..............................………….11
Список используемой литературы…………................................…………..14
Введение
Вещества в твердом состоянии при обычной температуре и давлении могут иметь кристаллическое или аморфное строение. В природе наиболее распространены кристаллические твердые вещества, для структуры которых характерен геометрически строгий порядок расположения частиц (атомов, ионов) в трехмерном пространстве. Кристаллическое состояние является стабильным при обычных условиях и характеризуется наиболее низкой внутренней энергией. Твердые кристаллические вещества имеют четкие геометрические формы, определенные температуры плавления, в большинстве случаев проявляют анизотропию, т.е. их физические свойства (показатель преломления, теплопроводность, скорости растворения и роста кристаллов и др.) неодинаковы при измерении в различных направлениях.
Стеклообразное состояние вещества представляет собой аморфную разновидность твердого состояния. Стеклообразное состояние является метастабильным, т. е. характеризуется избытком внутренней энергии. Пространственное расположение частиц вещества, находящегося в стеклообразном состоянии, является неупорядоченным, что подтверждается результатами рентгеноструктурных исследований.
Согласно законам химической термодинамики переход веществ из стеклообразного состояния в кристаллическое должен осуществляться самопроизвольно, однако высокая вязкость твердых веществ делает невозможным поступательное движение частиц, направленное на перестройку структуры. В твердых телах частицы совершают только колебательные движения относительно положения равновесия.
Строение стекла
Физические свойства веществ зависят от их состава и строения. Строение стекол является одним из разделов единой проблемы строения вещества. В связи с этим необходимо подчеркнуть, что современные представления о строении стекла базируются на фундаментальных положениях теоретических разделов неорганической и физической химии, кристаллохимии, химии и физики твердого состояния, и, кроме того, включают идеи и обобщенные положения отдельных гипотез строения стекла, основу которых составляют эмпирические зависимости свойств от состава и строения.
Отсутствие прямых методов исследования аморфных веществ, отсутствие способов плоскостного изображения объемно неупорядоченных структур пока не позволяют создать завершенную теорию строения стекла.
Существует несколько теоретических направлений решения проблемы строения стекла, среди которых наиболее широкое распространение получили кристаллохимическое и валентно-химическое. Они рассматривают строение стекла на электронном, атомном или молекулярном уровнях, базируясь на основных положениях кристаллохимии, теорий химической связи, зонного строения твердых тел . Преимущественное развитие этих направлений обусловлено в первую очередь прогрессом в области изучения структуры веществ, находящихся в кристаллическом состоянии. Следует отметить, что основополагающие гипотезы строения стекла А. А. Лебедева (1921) и Захариасена (1931) появились вскоре после открытия прямого метода изучения структуры кристаллов—метода рентгеноструктурного анализа (Лауэ, 1912). Менее распространены представления о полимерном строении стекол, кинетический подход к процессам твердения расплавов в виде стекла, а также представления о строении стекол на основе концепций о строении жидкостей или расплавов.
Учитывая сложность и многоплановость вопроса строения стекла, ограничимся рассмотрением основных положений кристаллохимического и валентно-химического направлений, иллюстрируя их конкретными примерами строения силикатных стекол по мере усложнения их состава — от простейшего по составу однокомпонентного кварцевого стекла до двух-, трех- и многокомпонентных составов промышленных стекол.
Кристаллохимическое описание строения стекол
В основе данного описания лежат понятия ближнего и дальнего порядка в структуре веществ. Ближний порядок в общем случае, означает правильное расположение отдельных атомов относительно некоторого фиксированного атома. Для оксидных стекол ближний порядок характеризует расположение атомов кислорода относительно катионов. Например, атомы кремния всегда окружены четырьмя атомами кислорода. Координационные группировки [SiО2]4 сохраняются в расплавленном, кристаллическом или стеклообразном состояниях диоксида кремния. Это означает, что в структуре стекла сохраняется ближний порядок в расположении анионов относительно катионов кремния, характерный для координационной структуры кристаллов.
Дальним порядком называется строго периодическое и последовательное расположение атомов или группировок из атомов в пространстве, которое обусловливает образование единой трехмерной решетки.
Если для кристаллических структур характерно наличие ближнего и дальнего порядков, то особенность строения стекол состоит в том, что в их структуре имеется ближний порядок, но отсутствует дальний порядок в расположении координационных групп атомов. Отсутствие дальнего порядка в структуре характерно для жидкостей и аморфных тел.
Основными элементами структуры силикатных стекол являются тетраэдры [SiО4]4, которые, соединяясь, друг с другом вершинами, способны образовывать непрерывную в одном, двух, или трех измерениях пространственную структуру (структурную сетку по Захариасену).
Протяженность сетки определяется содержанием в составе стекла диоксида кремния. Апериодическую сетку, образующуюся путем сочленения координационных полиэдров вершинами, можно рассматривать как анион сложного состава. Компоненты стекла, способные самостоятельно образовывать структурную непрерывную сетку, такие, как SiO2, и другие, принадлежат к группе стеклообразователей. Компоненты стекла, не способные самостоятельно образовывать структурную непрерывную сетку, называются модификаторами. К группе модификаторов, как правило, принадлежат оксиды элементов первой и второй групп периодической системы, а также некоторых элементов других групп.
Катионы модификаторов располагаются в свободных полостях структурной сетки, компенсируя избыточный отрицательный заряд сложного аниона. Кислородное окружение катионов модификаторов формируется в соответствии с их координационными требованиями. Прочность связи модификатор — кислород значительно ниже прочности связи стеклообразователь — кислород, поэтому модификаторы не образуют прочных координационных групп.
Координационное число катиона модификатора в стекле представляет собой некоторое среднестатистическое число атомов кислорода, приходящееся на один атом модификатора. В отличие от геометрически правильных группировок координационных полиэдров стеклообразователей координационные группировки модификаторов могут не иметь геометрически правильной фигуры.
В структуре стекла различают два возможных состояния атомов кислорода: атомы, соединяющие соседние полиэдры, называют мостиковыми, а соединяющие катионы модификаторов со сложным анионом, называют немостиковыми.
Кварцевое стекло
Структурной основной единицей кварцевого стекла является кремнекислородный тетраэдр. Атом кремния окружен четырьмя атомами кислорода, расположенными симметрично в вершинах тетраэдра.
Структура кварцевого стекла выполнена из тетраэдров SiО4, соединенных друг с другом вершинами через атомы кислорода. В результате образуется непрерывный пространственный каркас, отличающийся от геометрически правильных решеток кристаллических модификаций кварца отсутствием дальнего порядка в расположении и ориентации тетраэдров. Тетраэдры SiО4 не образуют в пространстве геометрически правильных сочленений в виде шести членных колец, характерных для структуры высокотемпературного кристобалита.
Структурная сетка стекла выглядит как искаженная кристаллическая решетка. Искажение заключается в произвольном варьировании значений угла связи Si—О—Si между соседними тетраэдрами в структуре стекла.
Группировка [SiО4]4- имеет избыточный отрицательный заряд (-4), но каркасная сетка из тетраэдров SiО4 в целом электронейтральна, так как каждый атом кислорода связан с двумя атомами кремния. В структуре кварцевого стекла все атомы кислорода мостиковые.
Структуры кристаллических и стеклообразной форм диоксида кремния не являются плотноупакованными, так как тетраэдры соединяются вершинами, а не ребрами и не гранями . В кварцевом стекле имеются свободные структурные полости, ограниченные в пространстве мостиковыми атомами кислорода.
Именно благодаря наличию в структуре свободных полостей, кварцевое стекло обладает наиболее высокой газопроницаемостью (гелий, водород, неон) по сравнению с другими силикатными стеклами, в составе которых кроме диоксида кремния присутствуют оксиды щелочных и щелочноземельных металлов.
Бинарные щелочно-силикатные стекла Бинарные щелочно-силикатные стекла систем Ме
2О—SiО
2 (где Me—Li, Na, К, Rb, Cs, Tl). Введение в состав стекла оксидов щелочных металлов приводит к разрыву структурной сетки и выстраиванию атомов щелочных металлов по месту разрыва по схеме:
В том месте, где выстроились ионы щелочного металла, отсутствует химическая связь между элементами структуры (место разрыва на схеме обозначено пунктирным овалом). Ионы щелочных металлов являются модификаторами. По мере увеличения концентрации Me2О в составе стекла растет число разрывов в структурной сетке и число не мостиковых атомов кислорода, приходящихся на один тетраэдр SiО4. При концентрациях Ме2О более 60 мол. в % создаются условия для образования изолированных тетраэдров SiО4. Кристаллизуются подобные расплавы чрезвычайно быстро, так как облегчаются условия переориентации структурных единиц, в то время как застывание расплава в виде стекла при этом затруднено.
Области стеклообразования в бинарных щелочно-силикатных системах непрерывны. В системе с Li2O содержание предельных концентраций SiO2 составляет 100—64 мол.%, с Na2О 100—48 мол.%, с К2О 100-46 мол. %, с TI2O 50—33 мол. %.
Фосфатные стекла
Фосфатные стекла построены из тетраэдров [PО4]3 . Один из атомов кислорода тетраэдра не может участвовать в образовании связи с другими компонентами структуры из-за наличия двойной связи фосфор — кислород. В структуре фосфатных стекол мостиковыми могут быть только три атома кислорода фосфор кислородного тетраэдра.
В этом отношении структура Р203 отличается от структур других стеклообразователей, у которых все атомы кислорода мостиковые. Пространственная структура фосфатных стекол может состоять из колец различного размера, образованных чередующимися атомами фосфора и кислорода, лент или цепочек из тетраэдров РО4.
Результаты рентгеноструктурного анализа показывают, что структура двойных фосфатных стекол подобна структуре двойных силикатных стекол по следующим двум параметрам: структурной основной единицей являются тетраэдрические элементокислородные группировки; с добавлением модифицирующих оксидов растет число не мостиковых атомов кислорода.
Микронеоднородное строение стекол.
Согласно современным представлениям, все однофазные стекла имеют микронеоднородное строение. Речь идет об образовании в структуре микрообластей размером от 1 до 20 нм, отличающихся химическим составом или геометрическим упорядочением в расположении частиц. Прямые доказательства микронеоднородного строения стекол были получены методами рентгеноструктурного, электронномикроскопичес-кого, спектрального анализов.
Микрообласти не имеют поверхностей раздела фаз. Они являются неотъемлемой частью структуры сложного однофазного стеклообразного силиката, но концентрация модифицирующих компонентов в них выше или ниже средней статистической.
Идея о микронеоднородном строении стекол была заложена в гипотезе А. А. Лебедева и получила развитие в работах Е. А. Порай-Коши-ца, К. С. Евстропьева, Н. В. Гребенщикова, О. С. Молчановой, С. П. Жданова.
Щелочно-боросиликатные стекла являются одним из примеров того, что при микронеоднородном строении может наступить фазовое разделение, сопровождающееся образованием границ раздела фаз. При выщелачивании стекол в области составов, растворами соляной, уксусной и других кислот образуется высокопористый кремнеземистый каркас (95—96 % SiO2), сохраняющий исходную форму, размеры и прочность (кварцоидные стекла, викор). Средний диаметр пор, в которых располагается натриево-боратная фаза, составляет 2—6 нм.
Свойства стёкол
Все типы стекол, независимо от их химического состава и температурной области затвердевания, обладают специфическими свойствами, которые отличают их от кристаллов и жидкостей.
Стекла рентгеноаморфны вследствие неупорядоченного атомного строения. В структуре стекла отсутствует дальний порядок, т. е. систематическая повторяемость элементарных объемов структуры, характерная для кристаллических веществ.
Если ориентировочно определить межплоскостное расстояние, соответствующее максимуму аморфного гало, то оно оказывается близким основному дифракционному максимуму кристобалита—0,415 нм. Однако в структуре стекла частицы находятся не на строго определенных расстояниях, как в кристобалите или других кристаллических модификациях кварца, а на расстояниях больших и меньших относительно некоторого среднестатистического значения.
Стекла изотропны, если они однородны по составу, свободны от напряжений и дефектов. Изотропия свойств стекол, как и других аморфных сред, обусловлена отсутствием направленной в пространстве ориентации частиц. Оптическая анизотропия может возникнуть в стекле в результате действия растягивающих или сжимающих напряжений (явления оптической анизотропии).
Температурный интервал стеклования.
Стекла не имеют определенной температуры затвердевания или плавления. Оба эти процесса происходят постепенно в некотором температурном интервале. При охлаждении расплав переходит из жидкого в пластическое состояние, и только затем—в твердое (процесс стеклования). Наоборот, при нагревании стекло переходит из твердого в пластическое состояние, при более высоких температурах—в жидкое (размягчение стекла).
Температурный интервал, в котором происходит процесс стеклования или обратный ему процесс размягчения, называется интервалом стеклования и ограничен двумя температурами: со стороны высоких температур Тf, со стороны низких температур Tg (температура стеклования).
При температуре Tg стекло обладает свойствами твердого упругого тела с хрупким разрушением. Температура Tf является границей пластического и жидкого состояний. При температуре Тf из стекломассы уже удается вытягивать тонкие нити.
Понятия о Tg и Tf были введены Тамманом. Подстрочные индексы «g» и «f» являются первыми буквами слов «Glass» — стекло и «Flissigkeit» — жидкость.
Процессы размягчения стекла или затвердевания стекломассы являются однофазными в отличие от плавления кристаллических веществ или кристаллизации расплавов. При размягчении стекла в интервале стеклования отсутствует жидкая фаза.
Свойства стекол по характеру изменения в интервале стеклования делят на три группы. К первой группе относятся свойства Р, характеризующие функцию состояния веществ (внутренняя энергия Е, мольный объем V, энтальпия Н, энтропия S) и кинетические свойства (вязкость), удельное сопротивление ). Свойства первой группы с повышением температуры изменяются постепенно. В интервале стеклования кривая имеет закругленный перегиб, соответствующий наиболее резкому изменению свойств первой группы. Свойства второй группы представляют собой первую производную по температуре dP/dT от свойств первой группы (коэффициенты термического расширения—линейный и объемный, теплоемкость) . Можно видеть, что в интервале стеклования первая производная dP/dT имеет точку перегиба Tg. Третья группа включает свойства (теплопроводность, диэлектрические потери), которые являются вторыми производными по температуре от функций состояния.
Характер изменения свойств стекол при нагревании резко отличается от температурной зависимости свойств кристаллических веществ. Для последних нет деления свойств на группы, характер температурных кривых однотипен: незначительное линейное изменение свойств до температуры плавления, резкое скачкообразное изменение свойств при температуре плавления. Температуры Tg, Tw, Tf лежат всегда ниже температуры плавления соответствующего кристалла.
Значения температур Tg, Tf, а также интервал стеклования (Tg—Tf) зависят от состава стекла.
Температуры Tg и Tf принадлежат к числу характеристических точек на температурной кривой вязкости. Температуре стеклования Tg соответствует вязкость стекломассы, равная 10123 Па-с, а температуре Tf—вязкость 108 Па-с.
Неравновесное состояние структуры стекла находит свое выражение в явлениях термического последействия (так называемое, «вековое повышение точки нуля» и «депрессия точки нуля»), широко известных при эксплуатации точных стеклянных шкал и термометров.
Классификация стекол
Согласно определению Комиссии по терминологии АН СССР (1932г.) «стеклом называются все аморфные тела, получаемые путем переохлаждения расплава независимо от их состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым» .
Из определения следует, что в стеклообразном состоянии могут находиться вещества, принадлежащие к разным классам химических соединений.
Органические стекла представляют собой органические полимеры-полиакрилаты, поликарбонаты, полистирол, сополимеры винилхлорида с метилметакрилатом, — находящиеся в стеклообразном состоянии. Наибольшее практическое применение нашли стекла на основе полиметил-метакрилата. По своей технологии, механизму твердения и строению органические стекла существенно отличаются от неорганических и составляют особый объект изучения.
Многовековая история стеклоделия связана с изготовлением силикатных стекол, основывающихся на системе Na2O—СаО—SiO2. Только во второй половине XX в. было показано, что натрий-кальций-силикатные стекла составляют небольшую часть безграничного мира неорганических стекол.
По типу неорганических соединений различают следующие классы стекол: элементарные, галогенидные, халькогенидные, оксидные, металлические, сульфатные, нитратные, карбонатные и др.
Элементарные стекла способны образовывать лишь небольшое число элементов — сера, селен, мышьяк, фосфор, углерод.
Стеклообразные - серу и селен, удается получить при быстром переохлаждении расплава; мышьяк — методом сублимации в вакууме; фосфор—при нагревании до 250°С под давлением более 100 МПа; углерод—в результате длительного пиролиза органических смол. Промышленное значение находит стеклоуглерод, обладающий уникальными свойствами, превосходящими свойства кристаллических модификации углерода: он способен оставаться в твердом состоянии вплоть до 3700°С, имеет низкую плотность порядка 1500 кг/м3, обладает высокой механической прочностью, электропроводностью, химически устойчив.
Галогенидные стекла получают на основе стеклообразующего компонента BeF2. Многокомпонентные составы фторбериллатных стекол содержат также фториды алюминия, кальция, магния, стронция, бария. Фторбериллатные стекла находят практическое применение благодаря высокой устойчивости к действию жестких излучений, включая рентгеновские лучи, и таких агрессивных сред, как фтор и фтористый водород.
Халькогенидные стекла получают в бескислородных системах типа As—J (где Z—S, Se, Te), Ge—As—X, Ge—Sb—X, Qe—P—X и др. Халькогенидные стекла имеют высокую прозрачность в ИК-области спектра, обладают электронной проводимостью, обнаруживают внутренний фотоэффект. Стекла применяются в телевизионных высокочувствительных камерах, в электронно-вычислительных машинах в качестве переключателей или элементов запоминающих устройств.
Оксидные стекла представляют собой обширный класс соединении. Наиболее легко образуют стекла оксиды SiO2, GeO2, ВгО3, P2O5.
Большая группа оксидов — TeO2, TiО2, SeО2, WO2, BiO5,
Например, легко образуются стекла в системах CaO—Al2O5, СаО—МgО3—ВаО3, P5O5—Ws.
Каждый из стеклообразующих оксидов может образовать стекла в комбинации с промежуточными или модифицирующими оксидами. Стекла получают названия по виду стеклообразующего оксида: силикатные, боратные, фосфатные, германатные и т.д. Практическое значение имеют стекла простых и сложных составов, принадлежащие к силикатным, боратным, боросиликатным, фосфатным, германатным, алюминатным, молибдатным, вольфраматным и другим системам.
Промышленные составы стекол содержат, как правило, не менее 5 компонентов, а специальные и оптические стекла могут содержать более 10 компонентов.
Важнейшее достоинство стекольной технологии состоит в том, что она позволяет получать в твердом состоянии вещества с нестехиометрическим соотношением компонентов, которые не существуют в кристаллическом состоянии. Более того, свойства стекол удается плавно регулировать в нужном направлении путем постепенного изменения состава.
Стекла, полученные на основе нитратных, сульфатных и карбонатных соединений, в настоящее время представляют научный интерес, но практического применения пока не имеют.
Традиционная технология получения стекол включает переохлаждение расплава до твердого состояния без кристаллизации. На этом способе основана мировая промышленная технология производства стекла.
Создание технических устройств, позволяющих отводить тепло с более высокой скоростью, расширяет число веществ, которые удается получить в стеклообразном состоянии путем охлаждения расплава. Сверхвысокие скорости переохлаждения порядка нескольких миллионов градусов в 1 с позволяют фиксировать в стеклообразном состоянии сплавы металлов (например, в системе Fe—Mi—В—Р).
Промышленное значение приобретают способы получения стекол путем вакуумного испарения, конденсации из паровой фазы, плазменного напыления. В этих случаях стекло удается получить из газовой фазы, минуя расплавленное состояние.
Облучение кристаллов частицами высоких энергий или воздействие на них ударной волны приводит к неупорядоченному смещению частиц из положений равновесия и, таким образом, к аморфизации структуры, в результате чего твердые кристаллические вещества могут быть переведены в стеклообразное состояние, минуя стадию плавления.
Применение стекол
Стекло строительное— изделия из стекла, применяемые в строительстве. Строительное стекло служит для стекления световых проёмов, устройства прозрачных и полупрозрачных перегородок, облицовки и отделки стен, лестниц и других частей зданий. К строительным стеклам, относят также тепло- и звукоизоляционные материалы из стекла (пеностекло и стеклянная вата), стеклянные трубы для скрытой электропроводки, водопровода, канализации и других целей, архитектурные детали, элементы стекложелезобетонных перекрытий и т. д. Большая часть ассортимента строительного стекала служит для остекления световых проёмов: листовое оконное стекло, зеркальное, рифлёное, армированное, узорчатое, двухслойное, пустотелые блоки и др. Тот же ассортимент стекла может быть использован и для устройства прозрачных и полупрозрачных перегородок.
Листовое оконное стекло, наиболее широко применяемое в строительстве, вырабатывается из расплавленной стекломассы, главным образом вертикальным или горизонтальным непрерывным вытягиванием ленты, от которой по мере её охлаждения и затвердевания отрезаются от одного конца листы требуемых размеров. Существенным недостатком листового оконного стекла является наличие некоторой волнистости, искажающей предметы, просматриваемые через него (в особенности под острым углом).
Зеркальное стекло обрабатывается шлифованием и полировкой с обеих сторон, благодаря чему оно обладает минимальными оптическим искажениями. Современный наиболее распространённый способ производства зеркального стекла состоит в горизонтальной непрерывной прокатке стекломассы между двумя валами, отжиге отформованной ленты в туннельной печи, шлифовке и полировке на механизированных и автоматизированных конвейерных установках. Зеркальное стекло изготовляется толщиной от 4 мм и выше (в особых случаях — до 40 мм), для варки его применяют высококачественные материалы, поэтому оно обладает и более высоким светопропусканием, чем обычное оконное стекло; применяется главным образом для остекления окон и дверей в общественных зданиях, витрин и для изготовления зеркал; механические свойства мало отличаются от механических свойств оконного стекла.
Прокатное узорчатое стекло имеет узорчатую поверхность, получаемую путём прокатки между двумя валками, один из которых рифлёный; вырабатывается как бесцветное, так и цветное; применяется в тех случаях, когда требуется получить рассеянный свет.
Узорчатое стекло с матовыми или «морозным» рисунком применяется для внутренних перегородок, дверных филёнок и остекления лестничных клеток; изготовляется путём обработки поверхности оконного или зеркального стекла. Матовый рисунок получается обработкой поверхности струей песка под шаблон. Рисунок, напоминающий морозный узор на стекле, получают нанесением на поверхность слоя животного клея, который в процессе сушки отрывается вместе с верхними слоями стекла.
Армированное стекло содержит в толще своей проволочную сетку; оно более прочно, чем обычное; при разбивании ударами или растрескивании во время пожара осколки его рассыпаются, будучи связанными арматурой; поэтому армированное стекло применяют для остекления фонарей промышленных и общественных зданий, кабин подъёмников, лестничных клеток, проёмов противопожарных стен. Вырабатывается методом непрерывного проката между валками с закаткой проволочной сетки, сматываемой с отдельного барабана. Волнистое армированное стекло, по форме напоминающее волнистые асбестоцементные листы, применяется для устройства перегородок, фонарей, перекрытия стеклянных галлерей и пассажей.
Сдвоенные (пакетные) стекла с воздушной или светорасссивающей прослойкой (например, из стеклянного волокна) обладают хорошими теплоизоляционными свойствами; изготовляются путём склейки 2 оконных стекол с прокладной рамкой. Толщина сдвоенных стекол с воздушной прослойкой 12—15 мм.
Пустотелые стеклянные блоки изготовляются путём прессования и последующей сварки двух стеклянных полукоробок; применяются для заполнения световых проёмов, главным образом в промышленных зданиях; обеспечивают хорошую освещённость рабочих мест и обладают высокими теплоизоляционными свойствами. Укладка блоков в проёмы производится на строительном растворе в виде панелей, перевязанных металлич. переплётами.
Облицовочное стекло (марблит) представляет собой непрозрачное цветное листовое стекло. Изготовляется путём периодической прокатки стекломассы на литейном столе с последующим отжигом в туннельных печах. Применяется для отделки фасадов и интерьеров жилых и общественных зданий. К облицовочному стеклу относится также цветное металлизированное стекло.
Стекло кварцевое — содержит не менее 99% SiO- (кварца). Кварцевое стекло выплавляют при температуре более 1700° С из самых чистых разновидностей кристаллического кварца, горного хрусталя, жильного кварца или чистых кварцевых песков. Кварцевое стекло пропускает ультрафиолетовые лучи, имеет очень высокую температуру плавления, благодаря небольшому коэффициенту расширения выдерживает резкое изменение температур, стойкое по отношению к воде и кислотам. Кварцевое стекло применяют для изготовления лабораторной посуды, тиглей, оптических приборов, изоляционных материалов, ртутных ламп («горное солнце»), применяемых в медицине и др.
Стекло органическое- (плексиглас) — прозрачная бесцветная пластическая масса, образующаяся при полимеризации метилового эфира метакриловой кислоты. Легко поддается механической обработке. Применяется как листовое стекло в авиа- и машиностроении, для изготовления бытовых изделий, средств защиты в лабораториях и др.
Стекло растворимое — смесь силикатов натрия и калия (или только натрия), водные растворы которых называются жидким стеклом. Растворимое стекло применяют для изготовления кислотоупорных цементов и бетонов, для пропитки тканей, изготовления огнезащитных красок, силика-геля, для укрепления слабых грунтов, канцелярского клея и др.
Стекло химико-лабораторное — стекло, обладающее высокой химической и термической стойкостью. Для повышения этих свойств в состав стекла вводят оксиды цинка и бора.
Стекловолокно — искусственное волокно строго цилиндрической формы с гладкой поверхностью, получаемое вытягиванием или расчленением расплавленного стекла. Широко применяется в химической промышленности для фильтрации горячих кислых и щелочных растворов, очистки горячего воздуха и газов, изготовления сальниковых набивок в кислотных насосах, армирования стеклопластиков и др.
Список используемой литературы
Химическая технология стекла и ситаллов. М., 1983
Стекло. М., 1973
Качалов Н. Стекло. Издательство АН СССР. Москва. 1959.
Шульц М. М., Мазурин О. В., Порай-Кошиц Е. А. Стекло: природа и строение. «Знание». Ленинград. 1985
17