СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Проект "Проценты в нашей жизни"

Категория: Математика

Нажмите, чтобы узнать подробности

Проценты – это одна из сложнейших тем математики. Понимание процентов и умение выполнять процентные расчёты необходимы для каждого человека. Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни.

Просмотр содержимого документа
«Проект "Проценты в нашей жизни"»

Исследовательская работа «Проценты в нашей жизни» Проблема: нахождение применения процента в жизни

Исследовательская работа

«Проценты в нашей жизни»

Проблема:

нахождение применения процента в жизни

Цели  Расширение знаний о применении процентных вычислений в задачах(в том числе ЕГЭ и ОГЭ) и в разных сферах жизни человека.

Цели

  • Расширение знаний о применении процентных вычислений в задачах(в том числе ЕГЭ и ОГЭ) и в разных сферах жизни человека.
Задачи исследовательской работы:   Изучить историю происхождения процента. Рассмотреть способы решения задач на проценты. Научиться решать задачи на проценты, входящие в контрольно-измерительные материалы ОГЭ по математике. Исследовать возможности применения «процента».

Задачи исследовательской работы:

  • Изучить историю происхождения процента.
  • Рассмотреть способы решения задач на проценты.
  • Научиться решать задачи на проценты, входящие в контрольно-измерительные материалы ОГЭ по математике.
  • Исследовать возможности применения «процента».
Актуальность Проценты – это одна из сложнейших тем математики. Понимание процентов и умение выполнять процентные расчёты необходимы для каждого человека. Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни .

Актуальность

  • Проценты – это одна из сложнейших тем математики. Понимание процентов и умение выполнять процентные расчёты необходимы для каждого человека. Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни .
Гипотеза Если имеются данные с разными параметрами, то их удобнее сравнить с помощью про­центов.

Гипотеза

  • Если имеются данные с разными параметрами, то их удобнее сравнить с помощью про­центов.
Объект исследования процент как универсальная единица сравнения различных дан­ных.

Объект исследования

  • процент как универсальная единица сравнения различных дан­ных.
Предмет исследования задачи практического содержания

Предмет исследования

  • задачи практического содержания
Методы исследования Методы исследования: 1.     Поиск информации о процентах в различных источниках: библиотеке, интернете, газетах, учебниках. 2.     Сравнение и обобщение информации. 3.     Интервьюирование людей различных профессий. 4. Методы решения заданий из материалов ОГЭ 5. Анализ собранной информации.

Методы исследования

Методы исследования:

1.     Поиск информации о процентах в различных источниках: библиотеке, интернете, газетах, учебниках.

2.     Сравнение и обобщение информации.

3.     Интервьюирование людей различных профессий.

4. Методы решения заданий из материалов ОГЭ

5. Анализ собранной информации.

 Из истории происхождения процентов Проценты – одно из математических понятий, которые часто встречаются в повседневной жизни. Слово «процент» происходит от латинского слова pro centum, что буквально переводится «за сотню», или «со ста». Впервые опубликовал таблицы для расчета процентов в  1584 году Симон Стевин – инженер из города Брюгге (Нидерланды).  Нынче процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу). Знак % происходит, как полагают, от итальянского слова cento (сто), которое в процентных расчетах часто писалось сокращенно cto.

Из истории происхождения процентов

  • Проценты – одно из математических понятий, которые часто встречаются в повседневной жизни. Слово «процент» происходит от латинского слова pro centum, что буквально переводится «за сотню», или «со ста». Впервые опубликовал таблицы для расчета процентов в  1584 году Симон Стевин – инженер из города Брюгге (Нидерланды).
  • Нынче процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу).
  • Знак % происходит, как полагают, от итальянского слова cento (сто), которое в процентных расчетах часто писалось сокращенно cto.
 1% = 1/100 = 0,01

1% = 1/100 = 0,01

Были известны проценты и в Индии. Индийские математики вы­числили проценты, применяя так называемое тройное правило. Например, при расчете 5% от 830 записывали: 1% составляет 830/100, 5% составляют (830-5)/100= 41,5 Они производили и более сложные вычисления. В Древнем Риме были широко распространены денежные расчеты с процентами. В Европе в середине века расширилась торговля и, следовательно, особое внимание об­ращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только процен­ты, но и проценты с процентов (сложные проценты).
  • Были известны проценты и в Индии. Индийские математики вы­числили проценты, применяя так называемое тройное правило. Например, при расчете 5% от 830 записывали: 1% составляет 830/100, 5% составляют (830-5)/100= 41,5
  • Они производили и более сложные вычисления.
  • В Древнем Риме были широко распространены денежные расчеты с процентами.
  • В Европе в середине века расширилась торговля и, следовательно, особое внимание об­ращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только процен­ты, но и проценты с процентов (сложные проценты).
Как решаются задачи на проценты? Как найти 1% от числа? Раз 1% это одна сотая часть, надо число разделить на 100. Деление на 100 можно заменить умножением на 0,01. Поэтому, чтобы найти 1% от данного числа, нужно умножить его на 0,01. А если нужно найти 5% от числа, то умножаем данное число на 0,05 и т.д. Пример. Найти: 25% от 120. Решение: 25% = 0,25; 120 . 0,25 = 30. Ответ: 30.

Как решаются задачи на проценты?

  • Как найти 1% от числа?
  • Раз 1% это одна сотая часть, надо число разделить на 100. Деление на 100 можно заменить умножением на 0,01. Поэтому, чтобы найти 1% от данного числа, нужно умножить его на 0,01. А если нужно найти 5% от числа, то умножаем данное число на 0,05 и т.д.
  • Пример. Найти: 25% от 120.
  • Решение:
  • 25% = 0,25; 120 . 0,25 = 30. Ответ: 30.
Правило 1. Чтобы найти данное число процентов от числа, нужно проценты записать десятичной дробью, а затем число умножить на эту десятичную дробь.   Пример. Токарь вытачивал за час 40 деталей. Применив резец из более прочной стали, он стал вытачивать на 10 деталей в час больше. На сколько процентов повысилась производительность труда токаря? Решение: Чтобы решить эту задачу, надо узнать, сколько, процентов составляют 10 деталей от 40. Для этого найдем сначала, какую часть составляет число 10 от числа 40. Мы знаем, что нужно разделить 10 на 40. Получится 0,25. А теперь запишем в процентах – 25%. Ответ: производительность труда токаря повысилась на 25%.

Правило 1. Чтобы найти данное число процентов от числа, нужно проценты записать десятичной дробью, а затем число умножить на эту десятичную дробь.

  • Пример. Токарь вытачивал за час 40 деталей. Применив резец из более прочной стали, он стал вытачивать на 10 деталей в час больше. На сколько процентов повысилась производительность труда токаря?
  • Решение:
  • Чтобы решить эту задачу, надо узнать, сколько, процентов составляют 10 деталей от 40. Для этого найдем сначала, какую часть составляет число 10 от числа 40. Мы знаем, что нужно разделить 10 на 40. Получится 0,25. А теперь запишем в процентах – 25%.
  • Ответ: производительность труда токаря повысилась на 25%.
Правило 2. Чтобы найти, сколько процентов одно число составляет от другого, нужно разделить первое число на второе и полученную дробь записать в виде процентов.   Пример. При плановом задании 60 автомобилей в день завод выпустил 66 автомобилей. На сколько процентов завод выполнил план? Решение: 66 : 60 = 1,1 - такую часть составляют изготовленные автомобили от количества автомобилей по плану. Запишем в процентах =110%. Ответ: 110%.

Правило 2. Чтобы найти, сколько процентов одно число составляет от другого, нужно разделить первое число на второе и полученную дробь записать в виде процентов.

  • Пример. При плановом задании 60 автомобилей в день завод выпустил 66 автомобилей. На сколько процентов завод выполнил план?
  • Решение:
  • 66 : 60 = 1,1 - такую часть составляют изготовленные автомобили от количества автомобилей по плану. Запишем в процентах =110%.
  • Ответ: 110%.
Правило 3. Чтобы найти процентное отношение двух чисел А и В, надо отношение этих чисел умножить на 100%, то есть вычислить (А : В) • 100%.   Пример. Найти число, если 15% его равны 30. Решение: 15% = 0,15; 30 : 0,15 = 200. Или х - данное число;  0,15 • х = 300;  х = 200. Ответ: 200. Пример. Из хлопка-сырца получается 24% волокна. Сколько надо взять хлопка-сырца, чтобы получить 480кг волокна? Решение: Запишем 24% десятичной дробью 0,24 и получим задачу о нахождении числа по известной ему части (дроби).  480 : 0,24= 2000 кг = 2 т Ответ: 2 т.

Правило 3. Чтобы найти процентное отношение двух чисел А и В, надо отношение этих чисел умножить на 100%, то есть вычислить (А : В) • 100%.

  • Пример. Найти число, если 15% его равны 30.
  • Решение:
  • 15% = 0,15;
  • 30 : 0,15 = 200.
  • Или
  • х - данное число; 0,15 • х = 300; х = 200.
  • Ответ: 200.
  • Пример. Из хлопка-сырца получается 24% волокна. Сколько надо взять хлопка-сырца, чтобы получить 480кг волокна?
  • Решение:
  • Запишем 24% десятичной дробью 0,24 и получим задачу о нахождении числа по известной ему части (дроби). 480 : 0,24= 2000 кг = 2 т
  • Ответ: 2 т.

Правило 4. Чтобы найти число по данным его процентам, надо выразить проценты в виде дроби, а затем значение процентов разделить на эту дробь.

  • В задачах на банковские расчёты обычно встречаются простые и сложные проценты. В чём же состоит разница простого и сложного процентного роста? При простом росте процент каждый раз исчисляется, исходя из начального значения, а при сложном росте он исчисляется из предыдущего значения. При простом росте 100% – начальная сумма, а при сложном 100% каждый раз новые и равны предыдущему значению.
  • Пример. Банк платит доход в размере 4% в месяц от величины вклада. На счет положили 300 тысяч рублей, доход начисляют каждый месяц. Вычислите величину вклада через 3 месяца.
  • Решение:
  • 100 + 4 = 104 (%) = 1,04 – доля увеличения вклада по сравнению с предыдущим месяцем.
  • 300 • 1,04 = 312 (тыс. р) – величина вклада через 1 месяц.
  • 312 • 1,04 = 324,48 (тыс. р) – величина вклада через 2 месяца.
  • 324,48 • 1,04 = 337,4592 (тыс. р) = 337 459,2 (р)-величина вклада через 3 месяца.
  • Или можно пункты 2-4 заменить одним, повторив с детьми понятие степени: 300•1,043 =337,4592(тыс. р) = 337 459,2 (р) – величина вклада через 3 месяца.
  • Ответ: 337 459,2 рубля
Задачи на проценты в КИМах на ОГЭ и ЕГЭ Пример. ( ОГЭ-2018. Математика. Тип. тест. задания_ред. Ященко_2018 ) Спортивный магазин проводит акцию. Любой джемпер стоит 400 рублей. При покупке двух джемперов – скидка на второй джемпер 75%. Сколько рублей придется заплатить за покупку двух джемперов в период акции? Решение: Согласно условию задачи получается, что первый джемпер покупается за 100 % его исходной стоимости, а второй за 100 – 75 = 25 (%), т.е. всего покупатель должен заплатить 100 + 25 = 125 (%) от исходной стоимости. 1 способ. Процент от числа находится умножением числа на дробь, соответствующую проценту или умножением числа на данный процент и делением на 100.  400 • 1,25 = 500 или 400 • 125/100 = 500.  2 способ. Применение свойства пропорции:  400 руб. – 100 %  х руб. – 125 %, получим х = 125 • 400 / 100 = 500 (руб.) Ответ: 500 рублей.

Задачи на проценты в КИМах на ОГЭ и ЕГЭ

  • Пример. ( ОГЭ-2018. Математика. Тип. тест. задания_ред. Ященко_2018 )
  • Спортивный магазин проводит акцию. Любой джемпер стоит 400 рублей. При покупке двух джемперов – скидка на второй джемпер 75%. Сколько рублей придется заплатить за покупку двух джемперов в период акции?
  • Решение:
  • Согласно условию задачи получается, что первый джемпер покупается за 100 % его исходной стоимости, а второй за 100 – 75 = 25 (%), т.е. всего покупатель должен заплатить 100 + 25 = 125 (%) от исходной стоимости.
  • 1 способ. Процент от числа находится умножением числа на дробь, соответствующую проценту или умножением числа на данный процент и делением на 100. 400 • 1,25 = 500 или 400 • 125/100 = 500.

2 способ.

  • Применение свойства пропорции: 400 руб. – 100 % х руб. – 125 %, получим х = 125 • 400 / 100 = 500 (руб.)
  • Ответ: 500 рублей.
Задача 1 . Морская вода содержит 5% соли (по массе). Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация соли составила 1,5%?    Решение:               5% 30 кг 1,5% 1,5% 0% х кг 3,5% Решение задач на смеси и сплавы, с использованием понятий «процентное содержание», «концентрация», «% -й раствор», с помощью Правила креста или квадрат Пирсона

Задача 1 . Морская вода содержит 5% соли (по массе). Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация соли составила 1,5%?

Решение:

5%

30 кг

1,5%

1,5%

0%

х кг

3,5%

Решение задач на смеси и сплавы, с использованием понятий «процентное содержание», «концентрация», «% -й раствор», с помощью Правила креста или квадрат Пирсона

Задача 2.  Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.  Решение:                                             х кг 10% 10% 30% 40% 20% ( х +3) кг 1) (кг) — 1-й сплав; 2) (кг) — 2-й сплав; 3) (кг) — 3-й сплав. Ответ: 9 кг .

Задача 2. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Решение:

х кг

10%

10%

30%

40%

20%

( х +3) кг

1)

(кг) — 1-й сплав;

2)

(кг) — 2-й сплав;

3)

(кг) — 3-й сплав.

Ответ: 9 кг .

Пример (ЕГЭ 2018 г. 01.06) 15 января планируется взять кредит в банке на некоторую сумму на 21 месяц. Условия его возврата таковы: - 1-го числа каждого месяца долг увеличивается на 1% по сравнению с концом предыдущего месяца; - с 2-го по 14-е число каждого месяца необходимо выплатить одним платежом часть долга; - на 15-е число каждого с 1-го по 20-й месяц долг должен уменьшаться на 50 тыс. руб.; - за двадцать первый месяц долг должен быть погашен полностью. Сколько тысяч рублей составляет долг на 15-е число 20-го месяца, если банку всего было выплачено 2073 тыс.

  • а) Долг на 1-е число месяца без учета процентной ставки: 1. S. 2. S-50. 3. S-100. ... 20. S-19⋅50. 21. S-20⋅50.
  • б) Выплачено до 15-го числа месяца: 1. 50 + S ⋅ 1 100 50+S⋅1100. 2. 50 + ( S − 50 ) ⋅ 1 100 50+(S−50)⋅1100. 3. 50 + ( S − 100 ) ⋅ 1 100 50+(S−100)⋅1100. ... 20. 50 + ( S − 19 ⋅ 50 ) ⋅ 1 100 50+(S−19⋅50)⋅1100. 21. ( S − 1000 ) + ( S − 1000 ) ⋅ 1 100 (S−1000)+(S−1000)⋅1100.
  • в) Долг после 14-го числа месяца: 1. S − 50 S−50. 2. S − 100 S−100. 3. S − 150 S−150. ... 20. S − 20 ⋅ 50 S−20⋅50. 21. 0 0.
  • г) Складывая выплаты, получим: 1000 + S − 1000 + 21 S 100 − ( 50 + 100 + … + 20 ⋅ 50 ) 100 = 2073. 1000+S−1000+21S100−(50+100+…+20⋅50)100=2073. 121 S = 207300 + 50 ⋅ 1 + 20 2 ⋅ 20 = 217800 , S = 1800. 121S=207300+50⋅1+202⋅20=217800,S=1800.
  • Требуется найти S − 1000 = 800 S−1000=800.
  • Ответ: 800 тыс. рублей.
При работе над проектом было проведено интервью у представителей различных профессий. Всем опрошенным задавалось всего два вопроса:  Применяете ли вы проценты в вашей профессии?  Приведите пример задачи на проценты, наиболее часто встречающейся в вашей профессии.  На первый вопрос все опрошенные ответили, что им часто приходится находить проценты.   Цыганкова И.Н., заместитель директора по учебной МБОУ СШ д.Паленка привела такую задачу: Из 90 обучающихся за 2017 -2018 г. на 4 и 5 закончили 42 обучающихся . Найти качество знаний по школе в процентах. (47%) Краснова Е.И., учитель истории МБОУ СШ д.Паленка:  Из 15 обучающихся за контрольную работу 8 человек получили «4» и «5». Какой процент обучающихся получили «4» и «5»? Автющенко М.А., зам.директора по ВР: На вопрос «Вы курите?» 8 человека из 60 опрошенных дали положительный ответ, 52 -отрицательный. В процентном отношении это выглядит так: Да  13% Нет  87%

При работе над проектом было проведено интервью у представителей различных профессий. Всем опрошенным задавалось всего два вопроса: Применяете ли вы проценты в вашей профессии? Приведите пример задачи на проценты, наиболее часто встречающейся в вашей профессии. На первый вопрос все опрошенные ответили, что им часто приходится находить проценты.

  • Цыганкова И.Н., заместитель директора по учебной МБОУ СШ д.Паленка привела такую задачу:
  • Из 90 обучающихся за 2017 -2018 г. на 4 и 5 закончили 42 обучающихся . Найти качество знаний по школе в процентах. (47%)
  • Краснова Е.И., учитель истории МБОУ СШ д.Паленка:
  • Из 15 обучающихся за контрольную работу 8 человек получили «4» и «5». Какой процент обучающихся получили «4» и «5»?
  • Автющенко М.А., зам.директора по ВР:
  • На вопрос «Вы курите?» 8 человека из 60 опрошенных дали положительный ответ, 52 -отрицательный. В процентном отношении это выглядит так:
  • Да 13% Нет 87%
Банковский работник: Смирнова Наталья Викторовна  Клиент открыл вклад на сумму 10000 рублей под 10% годовых. Сколько рублей оказалось на счете через год, если никакие операции с вкладом в течении года не выполнялись? Бухгалтер: Полякова Лидия Ивановна Подоходный налог установлен в размере 13%. До вычета подоходного налога 1% заработной платы отчисляется в пенсионный фонд. Работнику начислено 10500 рублей. Какова сумма вычетов ? Работник торговли: Меренкова Вера Михайловна Виноград стоит 120 руб. Какова стоимость винограда после уценки на 5% ?  Медицинская сестра школы: Полковникова Наталья Витальевна. В школе 90 обучающихся, по болезни отсутствуют -14 человек. Каков процент заболевших детей?
  • Банковский работник: Смирнова Наталья Викторовна
  • Клиент открыл вклад на сумму 10000 рублей под 10% годовых. Сколько рублей оказалось на счете через год, если никакие операции с вкладом в течении года не выполнялись?
  • Бухгалтер: Полякова Лидия Ивановна
  • Подоходный налог установлен в размере 13%. До вычета подоходного налога 1% заработной платы отчисляется в пенсионный фонд. Работнику начислено 10500 рублей. Какова сумма вычетов ?
  • Работник торговли: Меренкова Вера Михайловна
  • Виноград стоит 120 руб. Какова стоимость винограда после уценки на 5% ?
  • Медицинская сестра школы: Полковникова Наталья Витальевна.
  • В школе 90 обучающихся, по болезни отсутствуют -14 человек. Каков процент заболевших детей?
Вывод:   Умение решать задачи на проценты необходимо людям любой профессии.

Вывод:

Умение решать задачи на проценты необходимо людям любой профессии.

Где ещё в жизни применяются проценты?   Очень часто можно прочитать или услышать, например, что  в выборах приняли участие 57% избирателей, рейтинг победителя хит-парада равен 75%, молоко содержит 1,5% жира, материал содержит 100% хлопка . доля сырьевых доходов в бюджете РФ 40% Акция: предновогодняя распродажа – скидки до 50% Сплав содержит 40% никеля Влажность 73% Всхожесть семян 97% Инфляция составила за 2016 год 12% и так далее.

Где ещё в жизни применяются проценты?

  • Очень часто можно прочитать или услышать, например, что
  • в выборах приняли участие 57% избирателей,
  • рейтинг победителя хит-парада равен 75%,
  • молоко содержит 1,5% жира,
  • материал содержит 100% хлопка .
  • доля сырьевых доходов в бюджете РФ 40%
  • Акция: предновогодняя распродажа – скидки до 50%
  • Сплав содержит 40% никеля
  • Влажность 73%
  • Всхожесть семян 97%
  • Инфляция составила за 2016 год 12% и так далее.
Заключение   В результате проведенной работы. Изучена история происхождения «процента». Есть простые и сложные проценты. Задачи, связанные с банковскими расчетами решаются с помощью сложных процен­тов Проведен социологический опрос, в результате которых выявлены сферы применения процентов. Рассмотрен ряд задач из контрольно-измерительных материалов к ОГЭ. Большое практическое значение имеет умение решать задачи на проценты. Это связано с тем, что проценты широко используется как в реальной жизни, так и в различных областях нау­ки. Без процентов нельзя обойтись ни в финансовом анализе, ни в жизни. Чтобы начислить зарплату работнику нужно знать процент налоговых отчислений; чтобы открыть депозитный счет в банке – надо знать размеры процентных начислений на сумму вклада; чтобы знать приблизительный рост цен в будущем году – надо знать процент инфляции. В торговле понятие процент используется наиболее часто: скидки, наценки, уценки, прибыль, кредит, налог на прибыль и т.д.

Заключение

В результате проведенной работы.

Изучена история происхождения «процента». Есть простые и сложные проценты. Задачи, связанные с банковскими расчетами решаются с помощью сложных процен­тов

Проведен социологический опрос, в результате которых выявлены сферы применения процентов.

Рассмотрен ряд задач из контрольно-измерительных материалов к ОГЭ.

Большое практическое значение имеет умение решать задачи на проценты. Это связано с тем, что проценты широко используется как в реальной жизни, так и в различных областях нау­ки. Без процентов нельзя обойтись ни в финансовом анализе, ни в жизни. Чтобы начислить зарплату работнику нужно знать процент налоговых отчислений; чтобы открыть депозитный счет в банке – надо знать размеры процентных начислений на сумму вклада; чтобы знать приблизительный рост цен в будущем году – надо знать процент инфляции. В торговле понятие процент используется наиболее часто: скидки, наценки, уценки, прибыль, кредит, налог на прибыль и т.д.

Выдвинутая гипотеза:   « Если имеются данные с разными параметрами, то их удобнее сравнить с помощью процентов» подтвердилась в ходе работы над проектом.

Выдвинутая гипотеза:

  • « Если имеются данные с разными параметрами, то их удобнее сравнить с помощью процентов» подтвердилась в ходе работы над проектом.