СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
1. Планируемые результаты освоения учебного предмета «Физика»
Семиклассник научится:
Понимать смысл понятий:
физическое явление, физический закон, физические величины, взаимодействие;
смысл физических величин: путь, скорость, масса, плотность, сила, давление, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия;
смысл физических законов:
закон Паскаля, закон Архимеда.
Семиклассник получит возможность научиться:
- собирать установки для эксперимента по описанию, рисунку и проводить наблюдения изучаемых явлений;
- измерять массу, объём, силу тяжести, расстояние; представлять результаты измерений в виде таблиц, выявлять
эмпирические зависимости;
- объяснять результаты наблюдений и экспериментов;
- применять экспериментальные результаты для предсказания значения величин, характеризующих ход
физических явлений;
- выражать результаты измерений и расчётов в единицах Международной системы;
- решать задачи на применение изученных законов;
- приводить примеры практического использования физических законов;
- использовать приобретённые знания и умения в практической деятельности и в повседневной жизни.
Восьмиклассник научится:
Понимать смысл понятий:
тепловое движение, теплопередача, теплопроводность, конвекция, излучение, агрегатное состояние, фазовый переход, электрический заряд, электрическое поле, проводник и диэлектрик, химический элемент, атом и атомное ядро, протон, нейтрон, ядерные реакции синтеза и деления, электрическая сила, силовые линии электрического поля, ион, электрическая цепь и схема, точечный источник света, поле зрения, аккомодация, зеркало, тень, затмение, оптическая ось, фокус, оптический центр, близорукость и дальнозоркость, магнитное поле, магнитные силовые линии, электромагнитное поле, электромагнитные волны, постоянный магнит, магнитный полюс;
смысл физических величин:
внутренняя энергия, количество теплоты, удельная теплоемкость вещества, удельная теплота сгорания топлива, удельная теплота парообразования, удельная теплота плавления, температура, температура кипения, температура плавления, влажность, электрический заряд, сила тока, напряжение, сопротивление, удельное сопротивление, работа и мощность тока, массовое число, энергия связи, углы падения, отражения, преломления, фокусное расстояние, оптическая сила;
смысл физических законов:
закон сохранения энергии в тепловых процессах, закон сохранения электрического заряда, закон Ома для участка электрической цепи, закон Джоуля-Ленца, закон Ампера, закон прямолинейного распространения света, закон отражения и преломления света.
Восьмиклассник получит возможность научиться:
- описывать и объяснять физические явления: теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;
- использовать физические приборы и измерительные инструменты для измерения физических величин: температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;
- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования физических знаний о тепловых, электромагнитных явлениях;
- решать задачи на применение изученных физических законов.
Девятиклассник должны знать/понимать:
смысл понятий: магнитное поле, атом, атомное ядро, радиоактивность, ионизирующие излучения; относительность механического движения, траектория, инерциальная система отсчета, искусственный спутник, замкнутая система, внутренние силы, математический маятник, звук, изотоп, нуклон;
смысл физических величин: магнитная индукция, магнитный поток, энергия электромагнитного пол, перемещение, проекция вектора, путь, скорость, ускорение, ускорение свободного падения, центростремительное ускорение, сила, сила тяжести, масса, вес тела, импульс, период, частота, амплитуда, фаза, длина волны, скорость волны, энергия связи, дефект масс.
смысл физических законов: уравнения кинематики, законы Ньютона (первый, второй, третий), закон всемирного тяготения, закон сохранения импульса, принцип относительности Галилея, законы гармонических колебаний, правило левой руки, закон электромагнитной индукции, правило Ленца, закон радиоактивного распада.
Девятиклассник должен уметь:
собирать установки для эксперимента по описанию, рисунку и проводить наблюдения изучаемых явлений;
измерять силу тяжести, расстояние; представлять результаты измерений в виде таблиц, выявлять эмпирические зависимости;
объяснять результаты наблюдений и экспериментов;
применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений;
выражать результаты измерений и расчётов в единицах Международной системы;
решать задачи на применение изученных законов;
приводить примеры практического использования физических законов;
использовать приобретённые знания и умения в практической деятельности и в повседневной жизни.
Выпускник научится:
соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.
Примечание. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется.
понимать роль эксперимента в получении научной информации;
проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.
проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.
Выпускник получит возможность научиться:
осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;
использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.
Механические явления
Выпускник научится:
распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);
описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
Выпускник получит возможность научиться:
использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);
находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.
Тепловые явления
Выпускник научится:
распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества,поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
приводить примеры практического использования физических знаний о тепловых явлениях;
решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
Выпускник получит возможность научиться:
использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;
различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.
Электрические и магнитные явления
Выпускник научится:
распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
приводить примеры практического использования физических знаний о электромагнитных явлениях
решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления припоследовательномипараллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
Выпускник получит возможность научиться:
использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.
Квантовые явления
Выпускник научится:
распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;
описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.
Выпускник получит возможность научиться:
использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
соотносить энергию связи атомных ядер с дефектом массы;
приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.
Элементы астрономии
Выпускник научится:
указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
понимать различия между гелиоцентрической и геоцентрической системами мира;
Выпускник получит возможность научиться:
указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
различать гипотезы о происхождении Солнечной системы.
Личностные, метапредметные и предметные результаты освоения учебного предмета.
Личностными результатами изучения курса «Физика» в 7-м классе является формирование следующих умений:
Определять и высказывать под руководством педагога самые общие для всех людей правила поведения при сотрудничестве (этические нормы).
В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех правила поведения, делать выбор, при поддержке других участников группы и педагога, как поступить.
Средством достижения этих результатов служит организация на уроке парно-групповой работы.
Метапредметными результатами изучения курса «Физика» в 7-м классе являются формирование следующих универсальных учебных действий (УУД).
Регулятивные УУД:
Определять и формулировать цель деятельности на уроке.
Проговаривать последовательность действий на уроке.
Учиться высказывать своё предположение (версию) на основе работы с иллюстрацией учебника.
Учиться работать по предложенному учителем плану.
Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.
Учиться отличать верное выполненное задание от неверного.
Учиться совместно с учителем и другими учениками давать эмоциональную оценку деятельности класса на уроке.
Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
Ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя.
Делать предварительный отбор источников информации: ориентироваться в учебнике (на развороте, в оглавлении, в словаре).
Добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке.
Перерабатывать полученную информацию: делать выводы в результате совместной работы всего класса.
Перерабатывать полученную информацию: сравнивать и классифицировать.
Преобразовывать информацию из одной формы в другую: составлять физические рассказы и задачи на основе простейших физических моделей (предметных, рисунков, схематических рисунков, схем); находить и формулировать решение задачи с помощью простейших моделей (предметных, рисунков, схематических рисунков, схем).
Средством формирования этих действий служит учебный материал и задания учебника, ориентированные на линии развития средствами предмета.
Коммуникативные УУД:
Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).
Слушать и понимать речь других.
Читать и пересказывать текст.
Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог).
Совместно договариваться о правилах общения и поведения в школе и следовать им.
Учиться выполнять различные роли в группе (лидера, исполнителя, критика).
Средством формирования этих действий служит организация работы в парах и малых группах (в методических рекомендациях даны такие варианты проведения уроков).
Предметными результатами изучения курса «Физика» в 7-м классе являются формирование следующих умений:
1-й уровень (необходимый)
Семиклассник научится:
Понимать смысл понятий:
физическое явление, физический закон, физические величины, взаимодействие;
смысл физических величин: путь, скорость, масса, плотность, сила, давление, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия;
смысл физических законов:
закон Паскаля, закон Архимеда.
2-й уровень
Семиклассник получит возможность научиться:
- собирать установки для эксперимента по описанию, рисунку и проводить наблюдения изучаемых явлений;
- измерять массу, объём, силу тяжести, расстояние; представлять результаты измерений в виде таблиц, выявлять
эмпирические зависимости;
- объяснять результаты наблюдений и экспериментов;
- применять экспериментальные результаты для предсказания значения величин, характеризующих ход
физических явлений;
- выражать результаты измерений и расчётов в единицах Международной системы;
- решать задачи на применение изученных законов;
- приводить примеры практического использования физических законов;
- использовать приобретённые знания и умения в практической деятельности и в повседневной жизни.
8 КЛАСС
Личностными результатами изучения предметно-методического курса «Физика» в 8-м классе является формирование следующих умений:
Самостоятельно определять и высказывать общие для всех людей правила поведения при совместной работе и сотрудничестве (этические нормы).
В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, самостоятельно делать выбор, какой поступок совершить.
Средством достижения этих результатов служит учебный материал и задания учебника, нацеленные на 2-ю линию развития – умение определять своё отношение к миру.
Метапредметными результатами изучения курса «Физика» в 8-м классе являются формирование следующих универсальных учебных действий.
Регулятивные УУД:
Определять цель деятельности на уроке самостоятельно.
Учиться, совместно с учителем, обнаруживать и формулировать учебную проблему совместно с учителем.
Учиться планировать учебную деятельность на уроке.
Высказывать свою версию, пытаться предлагать способ её проверки.
Работая по предложенному плану, использовать необходимые средства (учебник, простейшие приборы и инструменты).
Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.
Определять успешность выполнения своего задания в диалоге с учителем.
Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
Ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг.
Делать предварительный отбор источников информации для решения учебной задачи.
Добывать новые знания: находить необходимую информацию, как в учебнике, так и в предложенных учителем словарях и энциклопедиях (в учебнике 2-го класса для этого предусмотрена специальная «энциклопедия внутри учебника»).
Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).
Перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы.
Средством формирования этих действий служит учебный материал – умение объяснять мир.
Коммуникативные УУД:
Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).
Слушать и понимать речь других.
Выразительно пересказывать текст.
Вступать в беседу на уроке и в жизни.
Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог) и технология продуктивного чтения.
Совместно договариваться о правилах общения и поведения в школе и следовать им. Учиться выполнять различные роли в группе (лидера, исполнителя, критика). Средством формирования этих действий служит работа в малых группах (в методических рекомендациях дан такой вариант проведения уроков).
Предметными результатами изучения курса «Физики» в 8-м классе являются формирование следующих умений:
1-й уровень (необходимый)
Восьмиклассник научится:
Понимать смысл понятий:
тепловое движение, теплопередача, теплопроводность, конвекция, излучение, агрегатное состояние, фазовый переход, электрический заряд, электрическое поле, проводник и диэлектрик, химический элемент, атом и атомное ядро, протон, нейтрон, ядерные реакции синтеза и деления, электрическая сила, силовые линии электрического поля, ион, электрическая цепь и схема, точечный источник света, поле зрения, аккомодация, зеркало, тень, затмение, оптическая ось, фокус, оптический центр, близорукость и дальнозоркость, магнитное поле, магнитные силовые линии, электромагнитное поле, электромагнитные волны, постоянный магнит, магнитный полюс;
смысл физических величин:
внутренняя энергия, количество теплоты, удельная теплоемкость вещества, удельная теплота сгорания топлива, удельная теплота парообразования, удельная теплота плавления, температура, температура кипения, температура плавления, влажность, электрический заряд, сила тока, напряжение, сопротивление, удельное сопротивление, работа и мощность тока, массовое число, энергия связи, углы падения, отражения, преломления, фокусное расстояние, оптическая сила;
смысл физических законов:
закон сохранения энергии в тепловых процессах, закон сохранения электрического заряда, закон Ома для участка электрической цепи, закон Джоуля-Ленца, закон Ампера, закон прямолинейного распространения света, закон отражения и преломления света.
2-й уровень
Восьмиклассник получит возможность научиться:
- описывать и объяснять физические явления: теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;
- использовать физические приборы и измерительные инструменты для измерения физических величин: температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;
- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования физических знаний о тепловых, электромагнитных явлениях;
- решать задачи на применение изученных физических законов.
9 класс
Личностными результатами обучения физике в основной школе являются:
сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
самостоятельность в приобретении новых знаний и практических умений;
готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.
Метапредметными результатами обучения физике в основной школе являются:
овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.
Предметные результаты обучения физике в основной школе являются:
знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.
Предметными результатами изучения курса «Физика» в 9-м классе являются формирование следующих умений.
1-й уровень (необходимый)
Учащиеся должны знать/понимать:
смысл понятий: магнитное поле, атом, атомное ядро, радиоактивность, ионизирующие излучения; относительность механического движения, траектория, инерциальная система отсчета, искусственный спутник, замкнутая система. внутренние силы, математический маятник, звук. изотоп, нуклон;
смысл физических величин: магнитная индукция, магнитный поток, энергия электромагнитного пол, перемещение, проекция вектора, путь, скорость, ускорение, ускорение свободного падения, центростремительное ускорение, сила, сила тяжести, масса, вес тела, импульс, период, частота. амплитуда, фаза, длина волны, скорость волны, энергия связи, дефект масс.
смысл физических законов: уравнения кинематики, законы Ньютона (первый, второй, третий), закон всемирного тяготения, закон сохранения импульса, принцип относительности Галилея, законы гармонических колебаний, правило левой руки, закон электромагнитной индукции, правило Ленца, закон радиоактивного распада.
2-й уровень (программный)
Учащиеся должны уметь:
собирать установки для эксперимента по описанию, рисунку и проводить наблюдения изучаемых явлений;
измерять силу тяжести, расстояние; представлять результаты измерений в виде таблиц, выявлять эмпирические зависимости;
объяснять результаты наблюдений и экспериментов;
применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений;
выражать результаты измерений и расчётов в единицах Международной системы;
решать задачи на применение изученных законов;
приводить примеры практического использования физических законов;
использовать приобретённые знания и умения в практической деятельности и в повседневной жизни.
2. Содержание тем учебного предмета «Физика»
7-й класс.
Введение
Что изучает физика. Некоторые физические термины. Наблюдения и опыты. Физические величины. Измерение физических величин. Точность и погрешность измерений. Физика и техника.
Первоначальные сведения о строении вещества
Строение вещества. Молекулы. Диффузия в газах, жидкостях и твердых телах. Взаимное притяжение и отталкивание молекул. Броуновское движение. Агрегатные состояния вещества. Различие в молекулярном строении твердых тел, жидкостей и газов.
Взаимодействие тел
Механическое движение. Равномерное прямолинейное и неравномерное движение. Скорость. Единицы скорости. Расчет пути и времени движения. Инерция. Взаимодействие тел. Масса тела. Единицы массы. Измерения массы тела на весах. Плотность вещества. Расчет массы и объема тела по его плотности.
Сила. Явление тяготения. Сила тяжести. Сила упругости. Закон Гука. Вес тела. Динамометр. Связь между силой тяжести и массой. Единицы силы. Сила тяжести на других планетах. Физические характеристики планет.
Сложение двух сил, направленных по одной прямой. Равнодействующая сил.
Сила трения. Трение покоя. Трение в природе и технике.
Давление твердых тел, жидкостей и газов
Давление. Единицы давления. Способы уменьшения и увеличения давления. Давление газа. Передача давления жидкостями и газами. Закон Паскаля. Давление в жидкости и газе. Расчет давления жидкости на дно и стенки сосуда. Сообщающиеся сосуды.
Вес воздуха. Атмосферное давление. Измерение атмосферного давления. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах. Изменение атмосферного давления с высотой. Манометры. Поршневой жидкостный насос. Гидравлический пресс.
Действие жидкости и газа на погруженное в них тело. Архимедова сила. Плавания тел. Плавание судов. Воздухоплавание.
Работа и мощность. Энергия
Механическая работа. Единицы работы. Мощность. Единицы мощности. Простые механизмы. Рычаг. Равновесие сил на рычаге. Момент силы. Рычаги в технике, быту и природе.
Применение правила равновесия рычага к блоку. Равенство работ при использовании простых механизмов. «Золотое правило» механики. Центр тяжести тела. Условия равновесия тел. Коэффициент полезного действия механизма.
Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Физика и мир, в котором мы живем.
8 класс
Тепловые явления
Тепловое движение. Температура. Внутренняя энергия. Способы изменения внутренней энергии.
Теплопроводность. Конвекция. Излучение. Количество теплоты.
Удельная теплоемкость вещества. Удельная теплота сгорания топлива. Расчет количества теплоты при нагревании и охлаждении тела. Энергия топлива.
Закон сохранения и превращения энергии в механических и тепловых процессах.
Агрегатные состояния вещества. Плавление и отвердевание. График плавления и отвердевания. Удельная теплота плавления.
Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара.
Кипение. Удельная теплота парообразования и конденсации. Влажность воздуха. Способы определения влажности воздуха
Работа газа и пара при расширении. КПД теплового двигателя. Двигатель внутреннего сгорания. Паровая турбина.
Электрические явления
Электризация тел при соприкосновении. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электроскоп. Электрическое поле.
Делимость электрического заряда. Электрон. Строение атомов. Объяснение электрических явлений. Проводники, полупроводники и непроводники электричества.
Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Электрический ток в металлах. Действия электрического тока. Направление тока. Сила тока. Единицы силы тока. Амперметр.
Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения.
Зависимость силы тока от напряжения. Электрическое сопротивление проводников. Единицы сопротивления. Закон Ома для участка цепи. Расчет сопротивления проводника.
Удельное сопротивление. Реостаты.
Последовательное соединение проводников. Параллельное соединение проводников
Работа и мощность электрического тока. Нагревание проводников электрическим током. Закон Джоуля - Ленца. Конденсатор. Лампа накаливания. Электрические нагревательные приборы. Короткое замыкание. Предохранители.
Электромагнитные явления
Магнитное поле. Магнитное поле прямого тока. Магнитные линии. Магнитное поле катушки с током. Постоянные магниты .Магнитное поле постоянных магнитов. Взаимодействие магнитов. Электромагниты и их применение. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электрический двигатель.
Световые явления
Источники света. Распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Закон преломления света.
Линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз и зрение.
9-й класс.
Законы взаимодействия и движения тел
Материальная точка. Система отсчета.
Перемещение. Определение координаты движущегося тела. Перемещение при прямолинейном равномерном движении. Прямолинейное равноускоренное движение. Ускорение. Скорость прямолинейного равноускоренного движения. График скорости. Перемещение при прямолинейном равноускоренном движении.
Относительность движения. Инерциальные системы отсчета. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона.
Свободное падение тел и движение тела, брошенного вверх. Невесомость. Закон всемирного тяготения. Ускорение свободного падения на Земле и других небесных телах. Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью. Искусственные спутники Земли. Импульс тела. Закон сохранения импульса. Реактивное движение. Ракеты. Вывод закона сохранения механической энергии.
Механические колебания и волны. Звук.
Колебательное движение. Свободные колебания. Величины, характеризующие колебательное движение. Гармонические колебания.
Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в среде. Волны. Длина волны. Скорость распространения волн.
Источники звука. Звуковые колебания. Высота, тембр и громкость звука. Распространение звука. Звуковые волны. Отражение звука. Звуковой резонанс.
Электромагнитное поле
Магнитное поле. Направление тока и направление линий его магнитного поля. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки.
Индукция магнитного поля. Магнитный поток. Явление электромагнитной индукции. Направление индукционного тока. Правило Ленца. Явление самоиндукции.
Получение и передача переменного электрического тока. Трансформатор. Электромагнитное поле. Электромагнитные волны.
Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.
Электромагнитная природа света. Преломление света. Физический смысл показателя преломления. Дисперсия света. Цвета тел. Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров.
Строение атома и атомного ядра
Радиоактивность. Модели атомов. Радиоактивные превращения атомных ядер. Экспериментальные методы исследования частиц. Открытие протона и нейтрона. Состав атомного ядра. Ядерные силы. Дефект массы. Энергия связи. Деление ядер урана. Цепная реакция. Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую энергию. Атомная энергетика. Биологическое действие радиации. Закон радиоактивного распада. Термоядерная реакция.
Строение и эволюция Вселенной
Состав, строение и происхождение Солнечной системы. Большие планеты Солнечной системы. Малые тела Солнечной системы. Строение, излучения и эволюция Солнца и звезд. Строение и эволюция Вселенной.
4. Тематическое планирование
7 класс
8 класс
№ | Раздел | Тема урока |
1 | 1.ТЕПЛОВЫЕ ЯВЛЕНИЯ (23 ч) 1.1 Внутренняя энергия. Количество теплоты (12 ч) | ТБ в кабинете физики. Тепловое движение. Температура. Внутренняя энергия
|
2 |
| Способы изменения внутренней энергии |
3 |
| Теплопроводность |
4 |
| Конвекция. Излучение |
5 |
| Количество теплоты. |
6 |
| Удельная теплоемкость вещества |
7 |
| Расчет количества теплоты при нагревании и охлаждении тела. Энергия топлива. |
8 |
| Л.р. №1 «Сравнение количеств теплоты при смешивании воды разной температуры» |
9 |
| Л.р. №2 «Измерение удельной теплоёмкости твёрдого тела» |
10 |
| Удельная теплота сгорания топлива |
11 |
| Закон сохранения и превращения энергии в механических и тепловых процессах |
12 |
| К.р. № 1 по теме «Тепловые явления». |
13 | 1.2 Изменение агрегатных состояний вещества (11 ч) | Агрегатные состояния вещества. Плавление и отвердевание |
14 |
| График плавления и отвердевания. Удельная теплота плавления. |
15 |
| Решение задач по теме «Плавление и отвердевание тел» |
16 |
| Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. |
17 |
| Кипение. Удельная теплота парообразования и конденсации |
18 |
| Решение задач по теме «Парообразование и конденсация жидкости » |
19 |
| Влажность воздуха. Способы определения влажности воздуха. Л.р. № 3 «Измерение влажности воздуха» |
20 |
| Работа газа и пара при расширении. Двигатель внутреннего сгорания |
21 |
| Паровая турбина. КПД теплового двигателя Двигатель внутреннего сгорания. Паровая турбина. |
22 |
| К.р. № 2 «Изменение агрегатных состояний вещества». |
23 |
| Обобщающий урок |
24 | 2.ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ (29 ч) 2.1 Электрическое поле (8 ч) | Электризация тел при соприкосновении. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. |
25 |
| Электроскоп. Электрическое поле. |
26 |
| Делимость электрического заряда. Электрон. Строение атома |
27 |
| Объяснение электрических явлений |
28 |
| Проводники, полупроводники и непроводники электричества |
29 |
| Электрический ток. Источники электрического тока |
30 |
| Электрическая цепь и ее составные части |
31 |
| К.р. № 3 «Электрическое поле» |
32 |
| Электрический ток в металлах. Действия электрического тока. Направление тока. |
33 | 2.2Характеристики электрического тока (10 ч) | Сила тока. Единицы силы тока
|
34 |
| Амперметр. Л.р. № 4 «Сборка электрической цепи и измерение силы тока в её различных участках» |
35 |
| Электрическое напряжение. Единицы напряжения |
36 |
| Вольтметр. Измерение напряжения. Зависимость силы тока от напряжения. |
37 |
| Электрическое сопротивление проводников. Единицы сопротивления. Л.р. № 5 «Измерение напряжения на различных участках электрической цепи» |
38 |
| Закон Ома для участка цепи |
39 |
| Расчет сопротивления проводника. Удельное сопротивление. |
40 |
| Примеры на расчет сопротивления проводника, силы тока и напряжения |
41 |
| Реостаты. Л.р. № 6 «Регулирование силы тока реостатом» |
42 |
| Л.р. № 7 «Измерение сопротивления проводника при помощи амперметра и вольтметра» |
43 | 2.3 Соединение проводников (11 ч) | Последовательное соединение проводников.
|
44 |
| Параллельное соединение проводников. |
45 |
| Решение задач по теме: «Виды соединений проводников». |
46 |
| К.р. № 4 по теме «Электрические явления». |
47 |
| Работа и мощность электрического тока. |
48 |
| Л.р. № 8 «Измерение мощности и работы тока в электрической лампе» |
49 |
| Нагревание проводников электрическим током. Закон Джоуля—Ленца. |
50 |
| Конденсатор. |
51 |
| Лампа накаливания. Электрические нагревательные приборы. Короткое замыкание, предохранители |
52 |
| К.р. № 5 по теме «Работа, мощность и энергия электрического тока». |
53 |
| Обобщающий урок |
54 | 3.ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ (5 ч) | Магнитное поле. Магнитное поле прямого тока. Магнитные линии |
55 |
| Магнитное поле катушки с током. Электромагниты и их применение. Л.р. № 9 «Сборка электромагнита и испытание его действия» |
56 |
| Магнитное поле Земли |
57 |
| Действие магнитного поля на проводник с током. Электрический двигатель. Л.р. № 10 «Изучение электрического двигателя постоянного тока (на модели)» |
58 |
| К.р. № 6 по теме «Электромагнитные явления» |
59 | 4.СВЕТОВЫЕ ЯВЛЕНИЯ (10 ч) | Источники света. Распространение света |
60 |
| Видимое движение светил |
61 |
| Отражение света. Закон отражения света |
62 |
| Плоское зеркало |
63 |
| Преломление света. Закон преломления света |
64 |
| Линзы. Оптическая сила линзы. |
65 |
| Изображения, даваемые линзой |
66 |
| Л.р. № 11 «Получение изображения при помощи линзы». |
67 |
| Глаз и зрение. Кратковременная к.р. № 7 по теме «Световые явления» |
68 |
| Решение задач. Построение изображений, полученных с помощью линз. |
69 |
| Повторение |
70 |
| Повторение |
9 класс
№ п/п | Раздел | Тема урока | |||
1
| Законы взаимодействия и движения тел (31 ч) Основы кинематики (10 ч) | Техника безопасности в кабинете физики. Материальная точка. Система отсчёта | |||
2 |
| Перемещение. Определение координаты движущегося тела | |||
3 |
| Перемещение при прямолинейном равномерном движении | |||
4 |
| Перемещение при прямолинейном равномерном движении | |||
5 |
| Прямолинейное равноускоренное движение. Ускорение | |||
6 |
| Скорость прямолинейного равноускоренного движения. График скорости | |||
7 |
| Перемещение при прямолинейном равноускоренном движении | |||
8 |
| Перемещение при прямолинейном равноускоренном движении | |||
9 |
| Лабораторная работа №1 «Исследование равноускоренного движения без начальной скорости» | |||
10 |
| Решение задач на прямолинейное равноускоренное движение | |||
11 |
| Решение графических задач на прямолинейное равноускоренное движение. | |||
12 |
| Свободное падение тел и движение тела, брошенного вверх. | |||
13 |
| Невесомость. | |||
14 |
| Лабораторная работа №2 «Измерение ускорения свободного падения » | |||
15 |
| Контрольная работа №1 «Основы кинематики» | |||
16 | Законы динамики (9 ч.) | Относительность движения | |||
17 |
| Инерциальные системы отсчёта. Первый закон Ньютона | |||
18 |
| Второй закон Ньютона | |||
19 |
| Третий закон Ньютона. Взаимодействие тел. | |||
20 |
| Закон всемирного тяготения | |||
21 |
| Ускорение свободного падения на Земле и других небесных телах | |||
22 |
| Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью. | |||
23 |
| Искусственные спутники Земли | |||
24 |
| Решение задач на движение по окружности. | |||
25 |
| Импульс тела. Закон сохранения импульса | |||
26 |
| Реактивное движение. Ракеты. Вывод закона сохранения механической энергии. | |||
27 |
| Решение задач на закон сохранения импульса. | |||
28 |
| Контрольная работа № 2 «Динамика материальной точки» | |||
29 | Механические колебания. Звук (11 ч.) | Колебательное движение. Свободные колебания. | |||
30 |
| Величины, характеризующие колебательное движение. | |||
31 |
| Лабораторная работа № 3 «Исследование зависимости периода и частоты свободных колебаний нитяного маятника от его длины» | |||
32 |
| Гармонические колебания. Затухающие и вынужденные колебания | |||
33 |
| Резонанс. Распространение колебаний в среде. | |||
34 |
| Волны. Длина волны. Скорость распространения волн. Источники звука. Звуковые колебания. | |||
35 |
| Высота, тембр, громкость звука. Акустическое загрязнение окружающей среды. | |||
36 |
| Распространение звука. Звуковые волны. | |||
37 |
| Отражение звука. Звуковой резонанс. | |||
38 |
| Обобщение темы «Механические колебания и волны» | |||
39 |
| Контрольная работа №3 по теме «Механические колебания и волны. Звук» | |||
40 | Электромагнитное поле (14 ч) | Магнитное поле. | |||
41 |
| Направление тока и направление линий его магнитного поля. | |||
42 |
| Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки | |||
43 |
| Индукция магнитного поля. | |||
44 |
| Магнитный поток. Явление электромагнитной индукции | |||
45 |
| Решение задач насилу Ампера и силу Лоренца | |||
46 |
| Направление индукционного тока. Правило Ленца. Явление самоиндукции. | |||
47 |
| Получение и передача переменного электрического тока. Трансформатор. | |||
48 |
| Лабораторная работа №4 «Изучение явления электромагнитной индукции» | |||
| |||||
49 |
| Электромагнитное поле. Электромагнитные волны. | |||
50 |
| Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. | |||
51 |
| Электромагнитная природа света. Преломление света. Физический смысл показателя преломления. Дисперсия света. Цвета тел | |||
52 |
| Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров. | |||
53 |
| Контрольная работа №4 по теме «Электромагнитное поле» | |||
54 | Строение атома и атомного ядра. Использование энергии атомных ядер (13ч) | Радиоактивность. | |||
55 |
| Модели атомов. | |||
56 |
| Радиоактивные превращения атомных ядер | |||
57 |
| Экспериментальные методы исследования частиц. | |||
58 |
| Открытие протона и нейтрона. | |||
59 |
| Состав атомного ядра. Ядерные силы. | |||
60 |
| Энергия связи. Дефект масс | |||
61 |
| Деление ядер урана. Цепные реакции. | |||
62 |
| Лабораторная работа № 5 «Изучение деления ядра атома урана по фотографии треков» | |||
63 |
| Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую энергию. | |||
64 |
| Атомная энергетика. Термоядерная реакция | |||
65 |
| Биологическое действие радиации. Закон радиоактивного распада. | |||
66 |
| Контрольная работа № 5 «Строение атома и атомного ядра». | |||
67 | Строение и эволюция Вселенной
| Состав, строение и происхождение Солнечной системы. Большие планеты Солнечной системы. Малые тела Солнечной системы. | |||
68 |
| Строение, излучения и эволюция Солнца и звезд. Строение и эволюция Вселенной. | |||
|
|
|
|
|
|