На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).
П1
П2
П3
П4
П5
П6
П7
П1
59
22
27
П2
59
24
44
10
21
П3
24
25
9
П4
22
44
8
32
П5
10
25
П6
27
8
11
П7
21
9
32
11
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Г в пункт К. В ответе запишите целое число.
Логическая функция F задаётся выражением (x ∧ ¬y) ∨ (y ≡ z ) ∨ w.
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.
Переменная 1
Переменная 2
Переменная 3
Переменная 4
Функция
???
???
???
???
F
1
0
1
0
0
0
0
1
1
0
0
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1
Переменная 1
Функция
???
???
F
0
1
0
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции
Дата
ID магазина
Артикул
Тип операции
Количество упаковок,
шт.
Цена,
руб./шт.
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул
Отдел
Наименование
Ед. изм.
Количество
в упаковке
Поставщик
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
ID магазина
Район
Адрес
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, сколько рублей потребовалось магазинам Заречного района для закупки чечевицы красной за период с 1 по 10 июня включительно.
По каналу связи передаются шифрованные сообщения, содержащие только десять букв: А, Б, Е, И, К, Л, Р, С, Т, У. Для передачи используется неравномерный двоичный код. Для девяти букв используются кодовые слова. Для буквы А − 00, Е — 010, И — 011, К — 1111, Л — 1101, Р — 1010, С — 1110, Т — 1011, У — 100.
Укажите кратчайшее кодовое слово для буквы Б, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Автомат получает на вход четырёхзначное десятичное число, в котором все цифры нечётные. По этому числу строится новое число по следующим правилам.
1. Складываются первая и вторая, а также третья и четвёртая цифры.
2. Полученные два числа записываются друг за другом в порядке неубывания (без разделителей).
Пример. Исходное число: 7511. Суммы: 7 + 5 = 12; 1 + 1 = 2. Результат: 212. Сколько существует чисел, в результате обработки которых автомат выдаст число 414
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и
его движения. У исполнителя существует две команды: Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись
Повтори k [Команда1 Команда2 … КомандаS]
означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:
Повтори 5 [Вперёд 9 Направо 120]
Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.
Автоматическая фотокамера производит растровые изображения размером 800 х 600 пикселей. При этом объём файла с изображением не может превышать 600 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Сколько слов длины 6, начинающихся с согласной буквы, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.
В каждой строке электронной таблицы записаны три натуральных числа, задающих длины трёх взаимно перпендикулярных рёбер прямоугольного параллелепипеда. Определите, сколько в таблице троек, для которых у заданного ими параллелепипеда для любых трёх граней с общей вершиной сумма площадей двух из них больше площади третьей.
Определите, сколько раз, включая эпиграфы и названия глав, в тексте произведения А. С. Пушкина «Капитанская дочка» встречается слово «граф» в любом падеже.
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 12-символьного набора: А, В, C, D, Е, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 400 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число – количество байт.
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды
заменить (111, 27)
преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка
исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для редактора:
НАЧАЛО
ПОКА НЕ нашлось (00)
заменить (01, 210)
заменить (02, 320)
заменить (03, 3012)
КОНЕЦ ПОКА
КОНЕЦ
Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними содержала только единицы, двойки и тройки. После выполнения данной программы получилась строка, содержащая 23 единицы, 48 двоек и 41 тройку. Сколько цифр было в исходной строке?
На рисунке — схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, К, Л, М, Н, П, Р, С, Т. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.
Сколько существует различных путей из города А в город Т, проходящих через город Л?
Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество пар, в которых хотя бы один из двух элементов делится на 3 и хотя бы один из двух элементов меньше среднего арифметического всех чётных элементов последовательности. В ответе запишите два числа: сначала количество найденных пар, а затем — максимальную сумму элементов таких пар.
Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
В файле 22_10.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B
Время выполнения процесса B (мс)
ID процесса(ов) A
1
4
0
2
3
0
3
1
1;2
4
7
3
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
Исполнитель РазДва преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
1. Прибавить 1
2. Умножить на 2
Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя РазДва — это последовательность команд. Укажите наименьшее натуральное число, которое нельзя получить из исходного числа 1, выполнив программу исполнителя РазДва, содержащую не более пяти команд.
Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [174457; 174505], числа, имеющие ровно два различных натуральных делителя, не считая единицы и самого числа. Для каждого найденного числа запишите эти два делителя в два соседних столбца на экране с новой строки в порядке возрастания произведения этих двух делителей. Делители в строке также должны следовать в порядке возрастания.
Например, в диапазоне [5; 9] ровно два различных натуральных делителя имеют числа 6 и 8, поэтому для этого диапазона вывод на экране должна содержать следующие значения:
В текстовом файле записан набор натуральных чисел, не превышающих 109. Гарантируется, что все числа различны. Необходимо определить, сколько в наборе таких пар чётных чисел, что их среднее арифметическое тоже присутствует в файле, и чему равно наибольшее из средних арифметических таких пар.
На каждом 3-м километре кольцевой автодороги с двусторонним движением установлены контейнеры для мусора. Длина кольцевой автодороги равна 3N километров. Нулевой километр и 3N-й километр автодороги находятся в одной точке. Известно количество мусора, которое накапливается ежедневно в каждом из контейнеров. Из каждого пункта мусор вывозит отдельный мусоровоз. Стоимость доставки мусора вычисляется как произведение количества мусора на расстояние от пункта до центра переработки. Центр переработки отходов открыли в одном из пунктов сбора мусора таким образом, чтобы общая стоимость доставки мусора из всех пунктов в этот центр была минимальной.
Определите минимальные расходы на доставку мусора в центр переработки отходов.
Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит число N (1 ≤ N ≤ 10 000 000) — количество пунктов сбора мусора на кольцевой автодороге. В каждой из следующих N строк находится число — количество мусора в контейнере (все числа натуральные, количество мусора в каждом пункте не превышает 1000). Числа указаны в порядке расположения контейнеров на автомагистрали, начиная с первого километра.
В ответе укажите два числа: сначала значение искомой величины для файла А, затем — для файла B.
Типовой пример организации данных во входном файле
6
8
20
5
13
7
19
При таких исходных данных, если контейнеры установлены на каждом километре автодороги, необходимо открыть центр переработки в пункте 6. В этом случае сумма транспортных затрат составит: 1 · 7 + 0 · 19 + 1 · 8 + 2 · 20 + 3 · 5 + 2 · 13.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Предупреждение: для обработки файла Bне следует использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.
Ответ:
Просмотр содержимого документа
«ЕГЭ 2023 Февраль Информатика Вариант 5»
Тип 1 № 10404
i
На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).
П1
П2
П3
П4
П5
П6
П7
П1
59
22
27
П2
59
24
44
10
21
П3
24
25
9
П4
22
44
8
32
П5
10
25
П6
27
8
11
П7
21
9
32
11
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Г в пункт К. В ответе запишите целое число.
Ответ:
2
Тип 2 № 15970
i
Логическая функция F задаётся выражением (x ∧ ¬y) ∨ (y ≡ z ) ∨ w.
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.
Переменная 1
Переменная 2
Переменная 3
Переменная 4
Функция
???
???
???
???
F
1
0
1
0
0
0
0
1
1
0
0
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1
Переменная 1
Функция
???
???
F
0
1
0
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
Ответ:
3
Тип 3 № 37493
i
В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.
3.xlsx
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции
Дата
ID магазина
Артикул
Тип операции
Количество упаковок, шт.
Цена, руб./шт.
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул
Отдел
Наименование
Ед. изм.
Количество в упаковке
Поставщик
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
ID магазина
Район
Адрес
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, сколько рублей потребовалось магазинам Заречного района для закупки чечевицы красной за период с 1 по 10 июня включительно.
В ответе запишите только число.
Ответ:
4
Тип 4 № 13732
i
По каналу связи передаются шифрованные сообщения, содержащие только десять букв: А, Б, Е, И, К, Л, Р, С, Т, У. Для передачи используется неравномерный двоичный код. Для девяти букв используются кодовые слова. Для буквы А − 00, Е — 010, И — 011, К — 1111, Л — 1101, Р — 1010, С — 1110, Т — 1011, У — 100.
Укажите кратчайшее кодовое слово для буквы Б, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Ответ:
5
Тип 5 № 13536
i
Автомат получает на вход четырёхзначное десятичное число, в котором все цифры нечётные. По этому числу строится новое число по следующим правилам.
1. Складываются первая и вторая, а также третья и четвёртая цифры.
2. Полученные два числа записываются друг за другом в порядке неубывания (без разделителей).
Пример. Исходное число: 7511. Суммы: 7 + 5 = 12; 1 + 1 = 2. Результат: 212. Сколько существует чисел, в результате обработки которых автомат выдаст число 414
Ответ:
6
Тип 6 № 47245
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и
его движения. У исполнителя существует две команды: Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись
Повтори k [Команда1 Команда2 … КомандаS]
означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:
Повтори 5 [Вперёд 9 Направо 120]
Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.
Ответ:
7
Тип 7 № 14695
i
Автоматическая фотокамера производит растровые изображения размером 800 х 600 пикселей. При этом объём файла с изображением не может превышать 600 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Ответ:
8
Тип 8 № 7921
i
Сколько слов длины 6, начинающихся с согласной буквы, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.
Ответ:
9
Тип 9 № 40984
В каждой строке электронной таблицы записаны три натуральных числа, задающих длины трёх взаимно перпендикулярных рёбер прямоугольного параллелепипеда. Определите, сколько в таблице троек, для которых у заданного ими параллелепипеда для любых трёх граней с общей вершиной сумма площадей двух из них больше площади третьей.
Задание 9
Ответ:
10
Тип 10 № 40985
Определите, сколько раз, включая эпиграфы и названия глав, в тексте произведения А. С. Пушкина «Капитанская дочка» встречается слово «граф» в любом падеже.
Задание 10
Ответ:
11
Тип 11 № 9364
i
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 12-символьного набора: А, В, C, D, Е, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 400 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число – количество байт.
Ответ:
12
Тип 12 № 35986
i
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды
заменить (111, 27)
преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка
исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для редактора:
НАЧАЛО
ПОКА НЕ нашлось (00)
заменить (01, 210)
заменить (02, 320)
заменить (03, 3012)
КОНЕЦ ПОКА
КОНЕЦ
Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними содержала только единицы, двойки и тройки. После выполнения данной программы получилась строка, содержащая 23 единицы, 48 двоек и 41 тройку. Сколько цифр было в исходной строке?
Ответ:
13
Тип 13 № 15800
i
На рисунке — схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, К, Л, М, Н, П, Р, С, Т. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.
Сколько существует различных путей из города А в город Т, проходящих через город Л?
Ответ:
14
Тип 14 № 13627
i
Сколько единиц содержится в двоичной записи значения выражения: 4511 + 2511 − 511?
Ответ:
15
Тип 15 № 15140
i
Сколько существует целых значений числа A, при которых формула
((xA) → (x2 ∧ ((y2 ≤ 36) → (y ≤ A))
тождественно истинна при любых целых неотрицательных x и y?
Ответ:
16
Тип 16 № 40991
Обозначим остаток от деления натурального числа a на натуральное число b как a mod b.
Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:
F(0) = 0;
F(n) = F(n − 1) + 1, если n 0 и при этом n mod 3 = 2;
F(n) = F((n − n mod 3) / 3), если n 0 и при этом n mod 3
Укажите наименьшее возможное n, для которого F(n) = 5.
Ответ:
17
Тип 17 № 40733
Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество пар, в которых хотя бы один из двух элементов делится на 3 и хотя бы один из двух элементов меньше среднего арифметического всех чётных элементов последовательности. В ответе запишите два числа: сначала количество найденных пар, а затем — максимальную сумму элементов таких пар.
Задание 17
Например, в последовательности (3 8 9 4) есть две подходящие пары: (3 8) и (9 4), в ответе для этой последовательности надо записать числа 2 и 13.
Ответ:
18
Тип 18 № 27671
i
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
Ответ:
19
Тип 19 № 28114
i
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Ответ:
20
Тип 20 № 28115
i
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
Ответ:
21
Тип 21 № 28116
i
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Ответ:
22
Тип 22 № 47591
В файле 22_10.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B
Время выполнения процесса B (мс)
ID процесса(ов) A
1
4
0
2
3
0
3
1
1;2
4
7
3
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
Ответ:
23
Тип 23 № 27248
i
Исполнитель РазДва преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
1. Прибавить 1
2. Умножить на 2
Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя РазДва — это последовательность команд. Укажите наименьшее натуральное число, которое нельзя получить из исходного числа 1, выполнив программу исполнителя РазДва, содержащую не более пяти команд.
Ответ:
24
Тип 24 № 47228
i
Текстовый файл состоит из символов A, C, D, F и O.
Определите максимальное количество идущих подряд пар символов вида
согласная + гласная.
Для выполнения этого задания следует написать программу.
24.txt
Ответ:
25
Тип 25 № 27422
i
Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [174457; 174505], числа, имеющие ровно два различных натуральных делителя, не считая единицы и самого числа. Для каждого найденного числа запишите эти два делителя в два соседних столбца на экране с новой строки в порядке возрастания произведения этих двух делителей. Делители в строке также должны следовать в порядке возрастания.
Например, в диапазоне [5; 9] ровно два различных натуральных делителя имеют числа 6 и 8, поэтому для этого диапазона вывод на экране должна содержать следующие значения:
2 3
2 4
Ответ:
26
Тип 26 № 35484
i
В текстовом файле записан набор натуральных чисел, не превышающих 109. Гарантируется, что все числа различны. Необходимо определить, сколько в наборе таких пар чётных чисел, что их среднее арифметическое тоже присутствует в файле, и чему равно наибольшее из средних арифметических таких пар.
Входные данные.
Задание 26
Первая строка входного файла содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число.
В ответе запишите два целых числа: сначала количество пар, затем наибольшее среднее арифметическое.
Пример входного файла:
6
3
8
14
11
2
17
В данном случае есть две подходящие пары: 8 и 14 (среднее арифметическое 11), 14 и 2 (среднее арифметическое 8). В ответе надо записать числа 2 и 11.
Ответ:
27
Тип 27 № 45261
i
На каждом 3-м километре кольцевой автодороги с двусторонним движением установлены контейнеры для мусора. Длина кольцевой автодороги равна 3N километров. Нулевой километр и 3N-й километр автодороги находятся в одной точке. Известно количество мусора, которое накапливается ежедневно в каждом из контейнеров. Из каждого пункта мусор вывозит отдельный мусоровоз. Стоимость доставки мусора вычисляется как произведение количества мусора на расстояние от пункта до центра переработки. Центр переработки отходов открыли в одном из пунктов сбора мусора таким образом, чтобы общая стоимость доставки мусора из всех пунктов в этот центр была минимальной.
Определите минимальные расходы на доставку мусора в центр переработки отходов.
Входные данные
27_A.txt
27_B.txt
Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит число N (1 ≤ N ≤ 10 000 000) — количество пунктов сбора мусора на кольцевой автодороге. В каждой из следующих N строк находится число — количество мусора в контейнере (все числа натуральные, количество мусора в каждом пункте не превышает 1000). Числа указаны в порядке расположения контейнеров на автомагистрали, начиная с первого километра.
В ответе укажите два числа: сначала значение искомой величины для файла А, затем — для файла B.
Типовой пример организации данных во входном файле
6
8
20
5
13
7
19
При таких исходных данных, если контейнеры установлены на каждом километре автодороги, необходимо открыть центр переработки в пункте 6. В этом случае сумма транспортных затрат составит: 1 · 7 + 0 · 19 + 1 · 8 + 2 · 20 + 3 · 5 + 2 · 13.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Предупреждение: для обработки файла Bне следует использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.