СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 22.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

ЕГЭ 2024 Декабрь Информатика Вариант 8

Категория: Информатика

Нажмите, чтобы узнать подробности

1.  Тип 1 № 13730

На рисунке справа схема дорог Н-⁠ского района изображена в виде графа; в таблице слева содержатся сведения о протяжённости каждой из этих дорог (в километрах).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  П1 П2 П3 П4 П5 П6 П7
П1   7          
П2 7   8   3 4  
П3   8   11 6    
П4     11   5    
П5   3 6 5     9
П6   4          
П7         9    

 

 

 

 

 

 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта А в пункт Г. В ответе запишите целое число  — так, как оно указано в таблице.

        2.  Тип 2 № 38534

Миша заполнял таблицу истинности логической функции F

 

¬ (y → (x ≡ w)) ∧ (z → x),

 

но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

 

 

 

 

 

Переменная 1 Переменная 2 Переменная 3 Переменная 4 Функция
  1 1   1
0     0 1
  0 1 0 1

 

Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить

не нужно.

 

Пример. Функция F задана выражением ¬ x ∨ y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид:

 

 

 

Переменная 1 Переменная 2 Функция
??? ??? F
0 1 0

 

В этом случае первому столбцу соответствует переменная y, а второму столбцу  — переменная x. В ответе следует написать: yx.

        3.  Тип 3 № 58470

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

 

Задание 3

 

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите общую стоимость товаров, полученных магазинами Центрального района с 11 по 15 июня от молокозавода № 1.

В ответе напишите только число  — найденную стоимость в рублях.

      4.  Тип 4 № 9293

Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Л использовали кодовое слово 1, для буквы М  — кодовое слово 01. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?

 

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

        5.  Тип 5 № 14767

Автомат получает на вход четырёхзначное число (число не может начинаться с нуля). По этому числу строится новое число по следующим правилам.

1.  Складываются отдельно первая и вторая, вторая и третья, третья и четвёртая цифры заданного числа.

2.  Наименьшая из полученных трёх сумм удаляется.

3.  Оставшиеся две суммы записываются друг за другом в порядке неубывания без разделителей.

Пример. Исходное число: 1984. Суммы: 1 + 9  =  10, 9 + 8  =  17, 8 + 4  =  12.

Удаляется 10. Результат: 1217.

 

Укажите наименьшее число, при обработке которого автомат выдаёт результат 613.

        6.  Тип 6 № 59711

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится B начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвост, означающая переход к перемещению 6eз рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n  — целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m  — целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 ... КомандаS] означает, что последовательность из S команд повторится k раз.

 

Черепахе был дан для исполнения следующий алгоритм:

 

Повтори 4 [Вперёд 10 Направо 270]

Поднять хвост

Вперёд 3 Направо 270 Вперёд 5 Направо 90

Опустить хвост

Повтори 2 [Вперёд 10 Направо 270 Вперёд 12 Направо 270].

Определите, сколько точек с целочисленными координатами будут находиться внутри объединения фигур, ограниченных заданными алгоритмом линиями, включая точки на линиях.

        7.  Тип 7 № 15625

Графический файл с разрешением 1024 х 600 на жестком диске занимает не более 120 КБайт. Определите максимальное количество цветов, которое может использоваться для кодирования данного изображения.

        8.  Тип 8 № 9796

Игорь составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Игорь использует 5-⁠буквенные слова, в которых есть только буквы A, B, C, X, причём буква X появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в кодовом слове любое количество раз или не встречаться совсем. Сколько различных кодовых слов может использовать Игорь?

        9.  Тип 9 № 40725

В каждой строке электронной таблицы записаны три натуральных числа, задающих длины трёх взаимно перпендикулярных рёбер прямоугольного параллелепипеда. Определите, сколько в таблице троек, для которых у заданного ими параллелепипеда можно так выбрать три грани с общей вершиной, что сумма площадей двух из них будет меньше площади третьей.

 

Задание 9

 

      10.  Тип 10 № 61356

Определите, сколько раз в книге братьев Стругацких «Понедельник начинается в субботу» встречается сочетание букв «ток» не в начале и не в конце слова. Например, сочетание «ток» в слове «протокол» надо учитывать, а в словах «токарь» и «поток»  — нет.

 

Задание 10

 

      11.  Тип 11 № 7758

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 21 символов и содержащий только символы A, D, F, H, X, Y, Z (таким образом, используется 7 различных символов). Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 40 паролей.

        12.  Тип 12 № 27272

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка

исполнителя при этом не изменяется.

 

Цикл

    ПОКА условие

        последовательность команд

    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие

        ТО команда1

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно).

В конструкции

    ЕСЛИ условие

        ТО команда1

        ИНАЧЕ команда2

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Дана программа для Редактора:

НАЧАЛО

ПОКА нашлось (111)

    заменить (111, 2)

    заменить (222, 11)

КОНЕЦ ПОКА

КОНЕЦ

 

К исходной строке, содержащей более 60 единиц и не содержащей других символов, применили приведённую выше программу. В результате получилась строка 2211. Какое наименьшее количество единиц могло быть в исходной строке?

        13.  Тип 13 № 15134

В терминологии сетей TCP/⁠IP маской сети называется двоичное число, определяющее, какая часть IP-⁠адреса узла сети относится к адресу сети, а какая  — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места  — нули. Обычно маска записывается по тем же правилам, что и IP-⁠адрес,  — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-⁠адресу узла и маске.

Например, если IP-⁠адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Для узла с IP-⁠адресом 93.138.161.49 адрес сети равен 93.138.160.0. Для скольких различных значений маски это возможно?

      14.  Тип 14 № 25846

Значение арифметического выражения 98 · 320 − 310 − 3 записали в системе счисления с основанием 3. Сколько цифр 2 содержится в этой записи?

        15.  Тип 15 № 29663

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наибольшего натурального числа А формула

 

(A < 50) ∧ (¬ДЕЛ(x, А) → (ДЕЛ(x, 10) → ¬ДЕЛ(x, 12)))

 

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

        16.  Тип 16 № 7308

Алгоритм вычисления значения функции F(n), где n  — натуральное число, задан следующими соотношениями:

F(1)  =  1;

F(n)  =  F(n – 1) + 2n – 1, если n > 1.

 

Чему равно значение функции F(10)? В ответе запишите только натуральное число.

        17.  Тип 17 № 37347

В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, для которых произведение элементов не кратно 14, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.

 

17.txt

 

Ответ:

        18.  Тип 18 № 46976

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Некоторые клетки на поле окружены границами, в эти клетки роботу заходить нельзя.

В начальный момент запас энергии робота составляет 3000 единиц. Проходя через каждую клетку, робот расходует энергию, при этом расход равен числу, записанному в клетке. В клетках с выделенным фоном находятся зарядные станции. При прохождении через эти клетки робот не расходует, а пополняет запас энергии. Сумма пополнения равна числу, записанному в этой клетке.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем  — минимальное.

Исходные данные записаны в электронной таблице. Границы отмечены утолщёнными линиями.

 

Задание 18

 

Пример входных данных (для таблицы размером 4 × 4):

 

 

 

 

 

 

13 8 69 50
30 35 57 17
32 90 55 32
44 12 80 43

 

При указанных входных данных максимальное значение получается при движении по маршруту:

 

3000 − 13 − 8 + 35 − 57 − 17 − 32 − 43 = 2865,

 

а минимальное  — при движении по маршруту:

 

3000 − 13 − 30 − 32 − 90 − 12 − 80 − 43 = 2700.

 

Ответ:

 

      19.  Тип 19 № 40735

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.

Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.

Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней, 1 ⩽ S ⩽ 33.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

      20.  Тип 20 № 40736

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.

Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.

Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней, 1 ⩽ S ⩽ 33.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Существует несколько таких значений S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найдите наименьшее и наибольшее из таких значений S.

В ответе запишите сначала наименьшее, затем наибольшее значение.

      21.  Тип 21 № 40737

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.

Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.

Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней; 1 ⩽ S ⩽ 33.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Найдите значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволяла бы ему гарантированно выиграть первым ходом.

      22.  Тип 22 № 47587

В файле 22_6.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы  — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

 

ID процесса B Время выполнения процесса B (мс) ID процесса(ов) A
1

 

4 0
2 3 0
3 1 1;2
4 7 3

 

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2  — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1  =  5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7  =  12 мс.

      23.  Тип 23 № 4944

У исполнителя Арифметик две команды, которым присвоены номера.

1.  Прибавь 1.

2.  Прибавь 3.

Первая из них увеличивает на 1 число на экране, вторая увеличивает это число на 3.

Программа для Арифметика  — это последовательность команд.

Сколько существует программ, которые число 2 преобразуют в число 15?

        24.  Тип 24 № 27688

Текстовый файл состоит не более чем из 106 символов X, Y и Z. Определите длину самой длинной последовательности, состоящей из символов Z. Хотя бы один символ Z находится в последовательности.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

 

Задание 24

 

        25.  Тип 25 № 37160

 

Найдите 5 чисел, больших 500 000, таких, что среди их делителей есть число, оканчивающееся на 8, при этом этот делитель не равен 8 и самому числу. В качестве ответа приведите 5 наименьших чисел, соответствующих условию.

Формат вывода: для каждого из 5 таких найденных чисел в отдельной строке сначала выводится само число, затем минимальный делитель, оканчивающийся на 8, не равный 8 и самому числу.

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

        26.  Тип 26 № 28132

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

 

Задание 26

 

В первой строке входного файла находятся два числа: S  — размер свободного места на диске (натуральное число, не превышающее 10 000) и N  — количество пользователей (натуральное число, не превышающее 2000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов  — 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар  — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

 

        27.  Тип 27 № 39256

Дана последовательность натуральных чисел. Необходимо найти максимально возможную сумму её непрерывной подпоследовательности, в которой количество нечётных элементов кратно k  =  10.

Входные данные.

 

Файл A

Файл B

 

Первая строка входного файла содержит целое число N  — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число. Гарантируется, что общая сумма всех чисел не превышает 2 · 109.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.

 

Ответ:

Показать полностью

Просмотр содержимого документа
«ЕГЭ 2024 Декабрь Информатика Вариант 8»

1.  Тип 1 № 13730

На рисунке справа схема дорог Н-⁠ского района изображена в виде графа; в таблице слева содержатся сведения о протяжённости каждой из этих дорог (в километрах).

 

 

 

П1

П2

П3

П4

П5

П6

П7

П1

7

П2

7

8

3

4

П3

8

11

6

П4

11

5

П5

3

6

5

9

П6

4

П7

9

 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта А в пункт Г. В ответе запишите целое число  — так, как оно указано в таблице.

2.  Тип 2 № 38534

Миша заполнял таблицу истинности логической функции F

¬ (y → (x ≡ w)) ∧ (z → x),

но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

 

Переменная 1

Переменная 2

Переменная 3

Переменная 4

Функция

1

1

1

0

0

1

0

1

0

1

 

Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить

не нужно.

 

Пример. Функция F задана выражением ¬ x ∨ y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид:

 

Переменная 1

Переменная 2

Функция

???

???

F

0

1

0

 

В этом случае первому столбцу соответствует переменная y, а второму столбцу  — переменная x. В ответе следует написать: yx.

3.  Тип 3 № 58470

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

Задание 3

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите общую стоимость товаров, полученных магазинами Центрального района с 11 по 15 июня от молокозавода № 1.

В ответе напишите только число  — найденную стоимость в рублях.

4.  Тип 4 № 9293

Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Л использовали кодовое слово 1, для буквы М  — кодовое слово 01. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?

 

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

5.  Тип 5 № 14767

Автомат получает на вход четырёхзначное число (число не может начинаться с нуля). По этому числу строится новое число по следующим правилам.

1.  Складываются отдельно первая и вторая, вторая и третья, третья и четвёртая цифры заданного числа.

2.  Наименьшая из полученных трёх сумм удаляется.

3.  Оставшиеся две суммы записываются друг за другом в порядке неубывания без разделителей.

Пример. Исходное число: 1984. Суммы: 1 + 9  =  10, 9 + 8  =  17, 8 + 4  =  12.

Удаляется 10. Результат: 1217.

 

Укажите наименьшее число, при обработке которого автомат выдаёт результат 613.

6.  Тип 6 № 59711

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится B начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвост, означающая переход к перемещению 6eз рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n  — целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m  — целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 ... КомандаS] означает, что последовательность из S команд повторится k раз.

 

Черепахе был дан для исполнения следующий алгоритм:

Повтори 4 [Вперёд 10 Направо 270]

Поднять хвост

Вперёд 3 Направо 270 Вперёд 5 Направо 90

Опустить хвост

Повтори 2 [Вперёд 10 Направо 270 Вперёд 12 Направо 270].

Определите, сколько точек с целочисленными координатами будут находиться внутри объединения фигур, ограниченных заданными алгоритмом линиями, включая точки на линиях.

7.  Тип 7 № 15625

Графический файл с разрешением 1024 х 600 на жестком диске занимает не более 120 КБайт. Определите максимальное количество цветов, которое может использоваться для кодирования данного изображения.

8.  Тип 8 № 9796

Игорь составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Игорь использует 5-⁠буквенные слова, в которых есть только буквы A, B, C, X, причём буква X появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в кодовом слове любое количество раз или не встречаться совсем. Сколько различных кодовых слов может использовать Игорь?

9.  Тип 9 № 40725

В каждой строке электронной таблицы записаны три натуральных числа, задающих длины трёх взаимно перпендикулярных рёбер прямоугольного параллелепипеда. Определите, сколько в таблице троек, для которых у заданного ими параллелепипеда можно так выбрать три грани с общей вершиной, что сумма площадей двух из них будет меньше площади третьей.

Задание 9

10.  Тип 10 № 61356

Определите, сколько раз в книге братьев Стругацких «Понедельник начинается в субботу» встречается сочетание букв «ток» не в начале и не в конце слова. Например, сочетание «ток» в слове «протокол» надо учитывать, а в словах «токарь» и «поток»  — нет.

Задание 10

11.  Тип 11 № 7758

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 21 символов и содержащий только символы A, D, F, H, X, Y, Z (таким образом, используется 7 различных символов). Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 40 паролей.

12.  Тип 12 № 27272

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка

исполнителя при этом не изменяется.

 

Цикл

    ПОКА условие

        последовательность команд

    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие

        ТО команда1

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно).

В конструкции

    ЕСЛИ условие

        ТО команда1

        ИНАЧЕ команда2

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Дана программа для Редактора:

НАЧАЛО

ПОКА нашлось (111)

    заменить (111, 2)

    заменить (222, 11)

КОНЕЦ ПОКА

КОНЕЦ

 

К исходной строке, содержащей более 60 единиц и не содержащей других символов, применили приведённую выше программу. В результате получилась строка 2211. Какое наименьшее количество единиц могло быть в исходной строке?

13.  Тип 13 № 15134

В терминологии сетей TCP/⁠IP маской сети называется двоичное число, определяющее, какая часть IP-⁠адреса узла сети относится к адресу сети, а какая  — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места  — нули. Обычно маска записывается по тем же правилам, что и IP-⁠адрес,  — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-⁠адресу узла и маске.

Например, если IP-⁠адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Для узла с IP-⁠адресом 93.138.161.49 адрес сети равен 93.138.160.0. Для скольких различных значений маски это возможно?

14.  Тип 14 № 25846

Значение арифметического выражения 98 · 320 − 310 − 3 записали в системе счисления с основанием 3. Сколько цифр 2 содержится в этой записи?

15.  Тип 15 № 29663

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наибольшего натурального числа А формула

(A x, А) → (ДЕЛ(x, 10) → ¬ДЕЛ(x, 12)))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

16.  Тип 16 № 7308

Алгоритм вычисления значения функции F(n), где n  — натуральное число, задан следующими соотношениями:

F(1)  =  1;

F(n)  =  F(n – 1) + 2n – 1, если n 1.

 

Чему равно значение функции F(10)? В ответе запишите только натуральное число.

17.  Тип 17 № 37347

В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, для которых произведение элементов не кратно 14, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.

17.txt

Ответ:

18.  Тип 18 № 46976

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Некоторые клетки на поле окружены границами, в эти клетки роботу заходить нельзя.

В начальный момент запас энергии робота составляет 3000 единиц. Проходя через каждую клетку, робот расходует энергию, при этом расход равен числу, записанному в клетке. В клетках с выделенным фоном находятся зарядные станции. При прохождении через эти клетки робот не расходует, а пополняет запас энергии. Сумма пополнения равна числу, записанному в этой клетке.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем  — минимальное.

Исходные данные записаны в электронной таблице. Границы отмечены утолщёнными линиями.

Задание 18

Пример входных данных (для таблицы размером 4 × 4):

 

13

8

69

50

30

35

57

17

32

90

55

32

44

12

80

43

 

При указанных входных данных максимальное значение получается при движении по маршруту:

3000 − 13 − 8 + 35 − 57 − 17 − 32 − 43 = 2865,

а минимальное  — при движении по маршруту:

3000 − 13 − 30 − 32 − 90 − 12 − 80 − 43 = 2700.

Ответ:

19.  Тип 19 № 40735

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.

Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.

Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней, 1 ⩽ S ⩽ 33.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

20.  Тип 20 № 40736

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.

Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.

Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней, 1 ⩽ S ⩽ 33.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Существует несколько таких значений S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найдите наименьшее и наибольшее из таких значений S.

В ответе запишите сначала наименьшее, затем наибольшее значение.

21.  Тип 21 № 40737

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.

Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.

Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней; 1 ⩽ S ⩽ 33.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Найдите значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволяла бы ему гарантированно выиграть первым ходом.

22.  Тип 22 № 47587

В файле 22_6.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы  — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

ID процесса B

Время выполнения процесса B (мс)

ID процесса(ов) A

1

4

0

2

3

0

3

1

1;2

4

7

3

 

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2  — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1  =  5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7  =  12 мс.

23.  Тип 23 № 4944

У исполнителя Арифметик две команды, которым присвоены номера.

1.  Прибавь 1.

2.  Прибавь 3.

Первая из них увеличивает на 1 число на экране, вторая увеличивает это число на 3.

Программа для Арифметика  — это последовательность команд.

Сколько существует программ, которые число 2 преобразуют в число 15?

24.  Тип 24 № 27688

Текстовый файл состоит не более чем из 106 символов X, Y и Z. Определите длину самой длинной последовательности, состоящей из символов Z. Хотя бы один символ Z находится в последовательности.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24

25.  Тип 25 № 37160

Найдите 5 чисел, больших 500 000, таких, что среди их делителей есть число, оканчивающееся на 8, при этом этот делитель не равен 8 и самому числу. В качестве ответа приведите 5 наименьших чисел, соответствующих условию.

Формат вывода: для каждого из 5 таких найденных чисел в отдельной строке сначала выводится само число, затем минимальный делитель, оканчивающийся на 8, не равный 8 и самому числу.

Ответ:

26.  Тип 26 № 28132

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

Задание 26

В первой строке входного файла находятся два числа: S  — размер свободного места на диске (натуральное число, не превышающее 10 000) и N  — количество пользователей (натуральное число, не превышающее 2000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов  — 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар  — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

27.  Тип 27 № 39256

Дана последовательность натуральных чисел. Необходимо найти максимально возможную сумму её непрерывной подпоследовательности, в которой количество нечётных элементов кратно k  =  10.

Входные данные.

Файл A

Файл B

Первая строка входного файла содержит целое число N  — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число. Гарантируется, что общая сумма всех чисел не превышает 2 · 109.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.

 

Ответ:



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!