СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 11.07.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

ЕГЭ 2025. Февраль . Информатика Вариант 5

Категория: Информатика

Нажмите, чтобы узнать подробности

  РЕШУ ЕГЭ — информатика Вариант № 17467088   1.  Тип 1 № 9753

На рисунке справа схема дорог Н-⁠ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  П1 П2 П3 П4 П5 П6 П7
П1   45   10      
П2 45     40   55  
П3         15 60  
П4 10 40       20 35
П5     15     55  
П6   55 60 20 55   45
П7       35   45  

 

 

 

 

 

 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта Г в пункт Е. В ответе запишите целое число  — так, как оно указано в таблице.

        2.  Тип 2 № 15970

Логическая функция F задаётся выражением (x ∧ ¬y) ∨ (yz ) ∨ w.

Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.

Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.

 

 

 

 

 

 

Переменная 1 Переменная 2 Переменная 3 Переменная 4 Функция
??? ??? ??? ??? F
      1 0
1 0 0 0 0
1 1 0   0

 

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала  — буква, соответствующая первому столбцу; затем  — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

 

Пример. Пусть задано выражение xy, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

 

 

 

Переменная 1 Переменная 1 Функция
??? ??? F
0 1 0

 

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

        3.  Тип 3 № 40978

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

 

Задание 3

 

Таблица «Движение товаров» содержит записи о поставках товаров в магазины города в первой декаде июня 2021 г. и о продаже товаров в этот же период. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит адреса магазинов.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите общую выручку от продажи всех видов сахара в магазинах Первомайского района за указанный период.

В ответе запишите целое число  — найденную общую стоимость в рублях.

      4.  Тип 4 № 13732

По каналу связи передаются шифрованные сообщения, содержащие только десять букв: А, Б, Е, И, К, Л, Р, С, Т, У. Для передачи используется неравномерный двоичный код. Для девяти букв используются кодовые слова. Для буквы А  — 00, Е  — 010, И  — 011, К  — 1111, Л  — 1101, Р  — 1010, С  — 1110, Т  — 1011, У  — 100.

Укажите кратчайшее кодовое слово для буквы Б, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.

 

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

        5.  Тип 5 № 13536

Автомат получает на вход четырёхзначное десятичное число, в котором все цифры нечётные. По этому числу строится новое число по следующим правилам.

1.  Складываются первая и вторая, а также третья и четвёртая цифры.

2.  Полученные два числа записываются друг за другом в порядке неубывания (без разделителей).

Пример. Исходное число: 7511. Суммы: 7 + 5  =  12; 1 + 1  =  2. Результат: 212. Сколько существует чисел, в результате обработки которых автомат выдаст число 414.

        6.  Тип 6 № 47312

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 4 [Вперёд 5 Направо 90 Вперёд 7 Направо 90].

Определите количество точек с целочисленными координатами, лежащих внутри или на границе области, которую ограничивает заданная алгоритмом линия.

      7.  Тип 7 № 14695

Автоматическая фотокамера производит растровые изображения размером 800 х 600 пикселей. При этом объём файла с изображением не может превышать 600 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?

        8.  Тип 8 № 7921

Сколько слов длины 6, начинающихся с согласной буквы, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.

        9.  Тип 9 № 63058

Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел.

Определите количество строк таблицы, для чисел которых одновременно выполнены все следующие условия:

—  в строке есть повторяющиеся числа;

—  максимальное число в строке не повторяется;

—  сумма всех повторяющихся чисел в строке меньше максимального числа этой строки. При подсчёте суммы повторяющихся чисел каждое число учитывается столько раз, сколько оно встречается.

В ответе запишите число  — количество строк, удовлетворяющих заданным условиям.

 

Задание 9

 

      10.  Тип 10 № 47214

Текст произведения Льва Николаевича Толстого «Севастопольские рассказы» представлен в виде файлов различных форматов. Откройте один из файлов и определите, сколько раз встречается в тексте отдельное слово «теперь» со строчной буквы. Другие формы этого слова учитывать не следует. В ответе запишите только число.

 

Задание 10

 

        11.  Тип 11 № 9364

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 12-⁠символьного набора: А, В, C, D, Е, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 400 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число  — количество байт.

        12.  Тип 12 № 35986

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка

исполнителя при этом не изменяется.

 

Цикл

    ПОКА условие

        последовательность команд

    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие

        ТО команда1

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно).

В конструкции

    ЕСЛИ условие

        ТО команда1

        ИНАЧЕ команда2

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Дана программа для редактора:

НАЧАЛО

    ПОКА НЕ нашлось (00)

        заменить (01, 210)

        заменить (02, 320)

        заменить (03, 3012)

    КОНЕЦ ПОКА

КОНЕЦ

 

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними содержала только единицы, двойки и тройки. После выполнения данной программы получилась строка, содержащая 23 единицы, 48 двоек и 41 тройку. Сколько цифр было в исходной строке?

        13.  Тип 13 № 3786

Если маска подсети 255.255.240.0 и IP-⁠адрес компьютера в сети 232.126.150.18, то номер компьютера в сети равен _____.

      14.  Тип 14 № 16892

Значение выражения 1254 + 258 − 30 записали в системе счисления с основанием 5.

Сколько цифр 4 содержится в этой записи?

        15.  Тип 15 № 15140

Сколько существует целых значений числа A, при которых формула

 

((x < A) → (x2 < 81)) ∧ ((y2 ≤ 36) → (yA))

 

тождественно истинна при любых целых неотрицательных x и y?

        16.  Тип 16 № 40991

Обозначим остаток от деления натурального числа a на натуральное число b как a mod b.

Алгоритм вычисления значения функции F(n), где n  — целое неотрицательное число, задан следующими соотношениями:

F(0)  =  0;

F(n)  =  F(n − 1) + 1, если n > 0 и при этом n mod 3  =  2;

F(n)  =  F((nn mod 3) / 3), если n > 0 и при этом n mod 3 < 2.

 

Укажите наименьшее возможное n, для которого F(n)  =  5.

      17.  Тип 17 № 59785

В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от −1 000 000 до 1 000 000 включительно.

 

Задание 17

 

Определите количество троек элементов в которых два числа трёхзначные, и сумма элементов тройки меньше максимального элемента последовательности оканчивающегося на 13. В ответе запишите два числа: сначала количество найденных троек, а затем минимальную из сумм таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

 

Ответ:

        18.  Тип 18 № 47222

Квадрат разлинован на N × N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз  — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа  — сначала максимальную сумму, затем минимальную.

 

18.xlsx

 

Исходные данные представляют собой электронную таблицу размером N × N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.

Пример входных данных:

 

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

 

Для указанных входных данных ответом должна быть пара чисел 38 и 22.

        19.  Тип 19 № 28105

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 20 камней, за один ход можно получить кучу из 21 камня или из 58 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, 2 ≤ S ≤ 39.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

        20.  Тип 20 № 28106

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 20 камней, за один ход можно получить кучу из 21 камня или из 58 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней; 2 ≤ S ≤ 39.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—  Петя не может выиграть за один ход;

—  Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

        21.  Тип 21 № 28107

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 20 камней, за один ход можно получить кучу из 21 камня или из 58 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней; 2 ≤ S ≤ 39.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

—  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

        22.  Тип 22 № 47592

В файле 22_11.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы  — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

 

ID процесса B Время выполнения процесса B (мс) ID процесса(ов) A
1

 

4 0
2 3 0
3 1 1;2
4 7 3

 

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2  — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1  =  5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7  =  12 мс.

      23.  Тип 23 № 6997

У исполнителя четыре команды, которым присвоены номера.

1.  Прибавь 1.

2.  Сделай чётное.

3.  Сделай нечётное.

4.  Умножь на 10.

Первая из них увеличивает на 1 исходное число x, вторая умножает это число на 2, третья переводит число x в число 2x + 1, четвёртая умножает его на 10. Например, вторая команда переводит число 10 в число 20, а третья переводит число 10 в число 21. Программа для исполнителя  — это последовательность команд.

Сколько существует программ, которые число 1 преобразуют в число 15?

        24.  Тип 24 № 27696

Текстовый файл состоит не более чем из 106 символов L, D и R. Определите длину самой длинной последовательности, состоящей из символов L. Хотя бы один символ L находится в последовательности.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

 

Задание 24

 

        25.  Тип 25 № 47229

 

Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:

—  символ «?» означает ровно одну произвольную цифру;

—  символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300405.

Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2139*4, делящиеся на 2023 без остатка. В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце  — соответствующие им результаты деления этих чисел на 2023.

Количество строк в таблице для ответа избыточно.

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

        26.  Тип 26 № 47230

В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки  — подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т. д. Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки.

Определите наибольшее количество коробок, которое можно использовать для упаковки одного подарка, и максимально возможную длину стороны самой маленькой коробки, где будет находиться подарок. Размер подарка позволяет поместить его в самую маленькую коробку.

Входные данные.

 

Задание 26

 

В первой строке входного файла находится число N  — количество коробок в магазине (натуральное число, не превышающее 10 000). В следующих N строках находятся значения длин сторон коробок (все числа натуральные, не превышающие 10 000), каждое  — в отдельной строке.

Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе.

Пример входного файла:

5

43

40

32

40

30

Пример входного файла приведён для пяти коробок и случая, когда минимальная допустимая разница между длинами сторон коробок, подходящих для упаковки «матрёшкой», составляет 3 единицы.

При таких исходных данных условию задачи удовлетворяют наборы коробок с длинами сторон 30, 40 и 43 или 32, 40 и 43 соответственно, то есть количество коробок равно 3, а длина стороны самой маленькой коробки равна 32.

 

Ответ:

 

        27.  Тип 27 № 57434

По каналу связи передаётся последовательность целых неотрицательных чисел  — показания прибора, полученные с интервалом в 1 мин. в течение T мин. (T  — целое число). Прибор измеряет количество атмосферных осадков, полученное регистратором за минуту, предшествующую моменту регистрации, и передаёт это значение в условных единицах измерения

 

Файл А

Файл В

 

Определите два таких переданных числа, чтобы между моментами их передачи прошло не менее K мин., а их сумма была максимально возможной. Укажите найденное суммарное количество осадков.

Входные данные.

Даны два входных файла (файл A и файл B), каждый из которых в первой строке содержит натуральное число K  — количество минут, которое должно пройти между двумя передачами показаний, а во второй  — количество переданных показаний N (1 ≤  N ≤ 10 000 000, N > K). В каждой из следующих N строк находится одно целое неотрицательное число, не превышающее 100 000, обозначающее количество осадков за соответствующую минуту.

Запишите в ответе два числа: сначала значение искомой величины для файла А, затем  — для файла B.

Типовой пример организации данных во входном файле:

3

5

15

10

200

0

30

При таких исходных данных максимально возможное суммарное количество осадков равно 45  — это сумма осадков, выпавших на первой и пятой минутах.

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.

 

Ответ:

Показать полностью

Просмотр содержимого документа
«ЕГЭ 2025. Февраль . Информатика Вариант 5»

РЕШУ ЕГЭ — информатика

Вариант № 17467088

1.  Тип 1 № 9753

На рисунке справа схема дорог Н-⁠ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

 

П1

П2

П3

П4

П5

П6

П7

П1

45

10

П2

45

40

55

П3

15

60

П4

10

40

20

35

П5

15

55

П6

55

60

20

55

45

П7

35

45

 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта Г в пункт Е. В ответе запишите целое число  — так, как оно указано в таблице.

2.  Тип 2 № 15970

Логическая функция F задаётся выражением (x ∧ ¬y) ∨ (yz ) ∨ w.

Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.

Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.

 

Переменная 1

Переменная 2

Переменная 3

Переменная 4

Функция

???

???

???

???

F

1

0

1

0

0

0

0

1

1

0

0

 

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала  — буква, соответствующая первому столбцу; затем  — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

 

Пример. Пусть задано выражение xy, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

 

Переменная 1

Переменная 1

Функция

???

???

F

0

1

0

 

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

3.  Тип 3 № 40978

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

Задание 3

Таблица «Движение товаров» содержит записи о поставках товаров в магазины города в первой декаде июня 2021 г. и о продаже товаров в этот же период. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит адреса магазинов.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите общую выручку от продажи всех видов сахара в магазинах Первомайского района за указанный период.

В ответе запишите целое число  — найденную общую стоимость в рублях.

4.  Тип 4 № 13732

По каналу связи передаются шифрованные сообщения, содержащие только десять букв: А, Б, Е, И, К, Л, Р, С, Т, У. Для передачи используется неравномерный двоичный код. Для девяти букв используются кодовые слова. Для буквы А  — 00, Е  — 010, И  — 011, К  — 1111, Л  — 1101, Р  — 1010, С  — 1110, Т  — 1011, У  — 100.

Укажите кратчайшее кодовое слово для буквы Б, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.

 

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

5.  Тип 5 № 13536

Автомат получает на вход четырёхзначное десятичное число, в котором все цифры нечётные. По этому числу строится новое число по следующим правилам.

1.  Складываются первая и вторая, а также третья и четвёртая цифры.

2.  Полученные два числа записываются друг за другом в порядке неубывания (без разделителей).

Пример. Исходное число: 7511. Суммы: 7 + 5  =  12; 1 + 1  =  2. Результат: 212. Сколько существует чисел, в результате обработки которых автомат выдаст число 414.

6.  Тип 6 № 47312

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 4 [Вперёд 5 Направо 90 Вперёд 7 Направо 90].

Определите количество точек с целочисленными координатами, лежащих внутри или на границе области, которую ограничивает заданная алгоритмом линия.

7.  Тип 7 № 14695

Автоматическая фотокамера производит растровые изображения размером 800 х 600 пикселей. При этом объём файла с изображением не может превышать 600 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?

8.  Тип 8 № 7921

Сколько слов длины 6, начинающихся с согласной буквы, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.

9.  Тип 9 № 63058

Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел.

Определите количество строк таблицы, для чисел которых одновременно выполнены все следующие условия:

—  в строке есть повторяющиеся числа;

—  максимальное число в строке не повторяется;

—  сумма всех повторяющихся чисел в строке меньше максимального числа этой строки. При подсчёте суммы повторяющихся чисел каждое число учитывается столько раз, сколько оно встречается.

В ответе запишите число  — количество строк, удовлетворяющих заданным условиям.

Задание 9

10.  Тип 10 № 47214

Текст произведения Льва Николаевича Толстого «Севастопольские рассказы» представлен в виде файлов различных форматов. Откройте один из файлов и определите, сколько раз встречается в тексте отдельное слово «теперь» со строчной буквы. Другие формы этого слова учитывать не следует. В ответе запишите только число.

Задание 10

11.  Тип 11 № 9364

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 12-⁠символьного набора: А, В, C, D, Е, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 400 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число  — количество байт.

12.  Тип 12 № 35986

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка

исполнителя при этом не изменяется.

 

Цикл

    ПОКА условие

        последовательность команд

    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие

        ТО команда1

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно).

В конструкции

    ЕСЛИ условие

        ТО команда1

        ИНАЧЕ команда2

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Дана программа для редактора:

НАЧАЛО

    ПОКА НЕ нашлось (00)

        заменить (01, 210)

        заменить (02, 320)

        заменить (03, 3012)

    КОНЕЦ ПОКА

КОНЕЦ

 

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними содержала только единицы, двойки и тройки. После выполнения данной программы получилась строка, содержащая 23 единицы, 48 двоек и 41 тройку. Сколько цифр было в исходной строке?

13.  Тип 13 № 3786

Если маска подсети 255.255.240.0 и IP-⁠адрес компьютера в сети 232.126.150.18, то номер компьютера в сети равен _____.

14.  Тип 14 № 16892

Значение выражения 1254 + 258 − 30 записали в системе счисления с основанием 5.

Сколько цифр 4 содержится в этой записи?

15.  Тип 15 № 15140

Сколько существует целых значений числа A, при которых формула

((x A) → (x2 y2 ≤ 36) → (yA))

тождественно истинна при любых целых неотрицательных x и y?

16.  Тип 16 № 40991

Обозначим остаток от деления натурального числа a на натуральное число b как a mod b.

Алгоритм вычисления значения функции F(n), где n  — целое неотрицательное число, задан следующими соотношениями:

F(0)  =  0;

F(n)  =  F(n − 1) + 1, если n 0 и при этом n mod 3  =  2;

F(n)  =  F((nn mod 3) / 3), если n 0 и при этом n mod 3

 

Укажите наименьшее возможное n, для которого F(n)  =  5.

17.  Тип 17 № 59785

В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от −1 000 000 до 1 000 000 включительно.

Задание 17

Определите количество троек элементов в которых два числа трёхзначные, и сумма элементов тройки меньше максимального элемента последовательности оканчивающегося на 13. В ответе запишите два числа: сначала количество найденных троек, а затем минимальную из сумм таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

 

Ответ:

18.  Тип 18 № 47222

Квадрат разлинован на N × N клеток (1 N

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа  — сначала максимальную сумму, затем минимальную.

18.xlsx

Исходные данные представляют собой электронную таблицу размером N × N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.

Пример входных данных:

1

8

8

4

10

1

1

3

1

3

12

2

2

3

5

6

 

Для указанных входных данных ответом должна быть пара чисел 38 и 22.

19.  Тип 19 № 28105

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 20 камней, за один ход можно получить кучу из 21 камня или из 58 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, 2 ≤ S ≤ 39.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

20.  Тип 20 № 28106

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 20 камней, за один ход можно получить кучу из 21 камня или из 58 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней; 2 ≤ S ≤ 39.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—  Петя не может выиграть за один ход;

—  Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21.  Тип 21 № 28107

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 20 камней, за один ход можно получить кучу из 21 камня или из 58 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней; 2 ≤ S ≤ 39.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

—  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22.  Тип 22 № 47592

В файле 22_11.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы  — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

ID процесса B

Время выполнения процесса B (мс)

ID процесса(ов) A

1

4

0

2

3

0

3

1

1;2

4

7

3

 

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2  — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1  =  5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7  =  12 мс.

23.  Тип 23 № 6997

У исполнителя четыре команды, которым присвоены номера.

1.  Прибавь 1.

2.  Сделай чётное.

3.  Сделай нечётное.

4.  Умножь на 10.

Первая из них увеличивает на 1 исходное число x, вторая умножает это число на 2, третья переводит число x в число 2x + 1, четвёртая умножает его на 10. Например, вторая команда переводит число 10 в число 20, а третья переводит число 10 в число 21. Программа для исполнителя  — это последовательность команд.

Сколько существует программ, которые число 1 преобразуют в число 15?

24.  Тип 24 № 27696

Текстовый файл состоит не более чем из 106 символов L, D и R. Определите длину самой длинной последовательности, состоящей из символов L. Хотя бы один символ L находится в последовательности.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24

25.  Тип 25 № 47229

Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:

—  символ «?» означает ровно одну произвольную цифру;

—  символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300405.

Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2139*4, делящиеся на 2023 без остатка. В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце  — соответствующие им результаты деления этих чисел на 2023.

Количество строк в таблице для ответа избыточно.

Ответ:

26.  Тип 26 № 47230

В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки  — подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т. д. Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки.

Определите наибольшее количество коробок, которое можно использовать для упаковки одного подарка, и максимально возможную длину стороны самой маленькой коробки, где будет находиться подарок. Размер подарка позволяет поместить его в самую маленькую коробку.

Входные данные.

Задание 26

В первой строке входного файла находится число N  — количество коробок в магазине (натуральное число, не превышающее 10 000). В следующих N строках находятся значения длин сторон коробок (все числа натуральные, не превышающие 10 000), каждое  — в отдельной строке.

Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе.

Пример входного файла:

5

43

40

32

40

30

Пример входного файла приведён для пяти коробок и случая, когда минимальная допустимая разница между длинами сторон коробок, подходящих для упаковки «матрёшкой», составляет 3 единицы.

При таких исходных данных условию задачи удовлетворяют наборы коробок с длинами сторон 30, 40 и 43 или 32, 40 и 43 соответственно, то есть количество коробок равно 3, а длина стороны самой маленькой коробки равна 32.

 

Ответ:

27.  Тип 27 № 57434

По каналу связи передаётся последовательность целых неотрицательных чисел  — показания прибора, полученные с интервалом в 1 мин. в течение T мин. (T  — целое число). Прибор измеряет количество атмосферных осадков, полученное регистратором за минуту, предшествующую моменту регистрации, и передаёт это значение в условных единицах измерения

Файл А

Файл В

Определите два таких переданных числа, чтобы между моментами их передачи прошло не менее K мин., а их сумма была максимально возможной. Укажите найденное суммарное количество осадков.

Входные данные.

Даны два входных файла (файл A и файл B), каждый из которых в первой строке содержит натуральное число K  — количество минут, которое должно пройти между двумя передачами показаний, а во второй  — количество переданных показаний N (1 ≤  N ≤ 10 000 000, N  K). В каждой из следующих N строк находится одно целое неотрицательное число, не превышающее 100 000, обозначающее количество осадков за соответствующую минуту.

Запишите в ответе два числа: сначала значение искомой величины для файла А, затем  — для файла B.

Типовой пример организации данных во входном файле:

3

5

15

10

200

0

30

При таких исходных данных максимально возможное суммарное количество осадков равно 45  — это сумма осадков, выпавших на первой и пятой минутах.

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.

 

Ответ:



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!