СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 11.07.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

ЕГЭ 2025. Февраль. Информатика Вариант 7

Категория: Информатика

Нажмите, чтобы узнать подробности

  РЕШУ ЕГЭ — информатика Вариант № 17467090   1.  Тип 1 № 10404

На рисунке схема дорог Н-⁠ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  П1 П2 П3 П4 П5 П6 П7
П1   59   22   27  
П2 59   24 44 10   21
П3   24     25   9
П4 22 44       8 32
П5   10 25        
П6 27     8     11
П7   21 9 32   11  

 

 

 

 

 

 

Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Г в пункт К. В ответе запишите целое число.

        2.  Тип 2 № 27371

Логическая функция F задаётся выражением ((x ∧ ¬y) → (¬z ∨ ¬w)) ∧ ((w → x) ∨ y). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

 

 

? ? ? ? F
1   1 1 0
0     0 0
1       0

 

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

        3.  Тип 3 № 37493

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

 

3.xlsx

 

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

 

ID операции Дата ID магазина Артикул Тип операции Количество упаковок, шт. Цена, руб./⁠шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

 

Артикул Отдел Наименование Ед. изм. Количество в упаковке Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

 

ID магазина Район Адрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, сколько рублей потребовалось магазинам Заречного района для закупки чечевицы красной за период с 1 по 10 июня включительно.

В ответе запишите только число.

        4.  Тип 4 № 13481

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В, Г использовали соответственно кодовые слова 000, 001, 10, 11. Укажите кратчайшее возможное кодовое слово для буквы Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

 

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

        5.  Тип 5 № 9190

Автомат получает на вход трёхзначное число. По этому числу строится новое число по следующим правилам.

1.  Складываются первая и вторая, а также вторая и третья цифры исходного числа.

2.  Полученные два числа записываются друг за другом в порядке возрастания (без разделителей).

Пример. Исходное число: 843. Суммы: 8 + 4  =  12; 4 + 3  =  7. Результат: 712.

 

Сколько существует чисел, в результате обработки которых автомат выдаст число 1216?

        6.  Тип 6 № 47310

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси абсцисс, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 4 [Вперёд 6 Направо 150 Вперёд 6 Направо 30].

Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.

      7.  Тип 7 № 11110

Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 320 × 640 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.

        8.  Тип 8 № 15626

Все 6-⁠буквенные слова, составленные из букв А, О, У, записаны в обратном алфавитном порядке. Вот начало списка:

1.  УУУУУУ

2.  УУУУУО

3.  УУУУУА

4.  УУУУОУ

...

 

На каком месте от начала списка находится слово ОУУУОО.

        9.  Тип 9 № 63025

Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел.

Определите количество строк таблицы, для чисел которых одновременно выполнены все следующие условия:

—  в строке есть повторяющиеся числа;

—  максимальное число в строке не повторяется;

—  сумма всех повторяющихся чисел в строке больше максимального числа этой строки. При подсчёте суммы повторяющихся чисел каждое число учитывается столько раз, сколько оно встречается.

В ответе запишите число  — количество строк, удовлетворяющих заданным условиям.

 

Задание 9

 

      10.  Тип 10 № 45244

Текст романа Льва Николаевича Толстого «Анна Каренина» представлен в виде файла формата «.docx». Откройте его и определите, сколько раз встречается в тексте отдельное слово «душа» со строчной буквы.

В ответе запишите только число.

 

Задание 10

 

        11.  Тип 11 № 27239

Каждый сотрудник предприятия получает электронный пропуск, на котором записаны личный код сотрудника и срок действия пропуска. Личный код состоит из 14 символов, каждый из которых может быть одной из 26 заглавных латинских букв или 10 цифр. Для записи кода на пропуске используют посимвольное кодирование, все символы кодируют одинаковым минимально возможным количеством битов. Срок действия записывается как номер года (число от 0 до 80, означающее год от 2000 до 2080) и номер месяца (число от 1 до 12). Номер года и номер месяца записаны на пропуске как двоичные числа, каждое из них занимает минимально возможное количество битов.

Вся информация на пропуске упакована так, чтобы занимать минимально возможное количество байтов. Сколько байтов занимает вся информация на пропуске? В ответе запишите только целое число  — количество байтов.

        12.  Тип 12 № 27543

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка

исполнителя при этом не изменяется.

 

Цикл

    ПОКА условие

        последовательность команд

    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие

        ТО команда1

        ИНАЧЕ команда2

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда1 (если условие ложно)

 

Дана программа для Редактора:

НАЧАЛО

ПОКА нашлось (01) ИЛИ нашлось (02) ИЛИ нашлось (03)

    заменить (01, 103)

    заменить (02, 10)

    заменить (03, 210)

КОНЕЦ ПОКА

КОНЕЦ

 

Известно, что исходная строка начинается с цифры 0, а далее содержит 12 цифр 1, 15 цифр 2 и 17 цифр 3, расположенных в произвольном порядке. Сколько цифр 2 будет в строке, которая получится после выполнения данной программы?

        13.  Тип 13 № 2236

В терминологии сетей TCP/⁠IP маской подсети называется 32-⁠разрядное двоичное число, определяющее, какие именно разряды IP-⁠адреса компьютера являются общими для всей подсети,  — в этих разрядах маски стоит 1. Обычно маски записываются в виде четверки десятичных чисел  — по тем же правилам, что и IP-⁠адреса. Для некоторой подсети используется маска 255.255.254.0. Сколько различных адресов компьютеров теоретически допускает эта маска, если два адреса (адрес сети и широковещательный) не используют?

      14.  Тип 14 № 48395

Операнды арифметического выражения записаны в системе счисления с основаниями 18 и 12:

 

28x218 + 93x512.

 

В записи чисел переменной x обозначена неизвестная цифра из алфавита десятичной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 133. Для найденного значения x вычислите частное от деления значения арифметического выражения на 133 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

      15.  Тип 15 № 16045

Для какого наибольшего целого неотрицательного числа A выражение

 

(y + 2x ≠ 48) ∨ (A < x) ∨ (A < y)

 

тождественно истинно, то есть принимает значение 1 при любых целых неотрицательных x и y?

        16.  Тип 16 № 62470

 

Алгоритм вычисления значения функции F(n), где n  — целое число, задан следующими соотношениями:

если

если

 

Определите количество значений n на отрезке [4 · 620; 5 · 620], для которых

      17.  Тип 17 № 60259

В файле содержится последовательность натуральных чисел, каждое из которых не превышает 100 000. Определите количество троек элементов последовательности, в которых ровно два из трёх элементов являются трёхзначными числами, а сумма элементов тройки не больше максимального элемента последовательности, оканчивающегося на 13. Гарантируется, что в последовательности есть хотя бы одно число, оканчивающееся на 13. В ответе запишите количество найденных троек чисел, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

 

Задание 17

 

Ответ:

        18.  Тип 18 № 27671

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз  — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

 

Задание 18

 

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков  — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

 

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

 

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

        19.  Тип 19 № 28099

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 37.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

        20.  Тип 20 № 28100

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 37.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—  Петя не может выиграть за один ход;

—  Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

        21.  Тип 21 № 28101

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 37.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

—  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

        22.  Тип 22 № 68523

В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Приостановка выполнения процесса не допускается. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы A и B могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор

процесса (ID), во втором столбце таблицы  — время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс независимый, то в таблице указано значение 0.

Типовой пример организации данных в файле:

 

 

ID процесса B Время выполнения процесса B (мс) ID процесса(ов) A
101 4 0
102 3 0
103 1 101; 102
104 7 103

 

Определите максимальную продолжительность отрезка времени (в мс), в течение которого возможно одновременное выполнение пяти процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.

 

Задание 22

 

        23.  Тип 23 № 13368

Исполнитель Плюс преобразует число на экране.

У исполнителя есть две команды, которым присвоены номера.

1.  Прибавить 2.

2.  Прибавить 5.

Первая команда увеличивает число на экране на 2, вторая увеличивает это число на 5. Программа для исполнителя Плюс  — это последовательность команд.

Сколько существует программ, которые число 1 преобразуют в число 20?

        24.  Тип 24 № 27692

Текстовый файл состоит не более чем из 106 символов A, B и C. Определите максимальное количество идущих подряд символов B.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

 

Задание 24

 

        25.  Тип 25 № 60267

 

Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:

—  символ «?» означает ровно одну произвольную цифру;

—  символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300405.

Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2157*4, делящиеся на 2024 без остатка. В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце  — соответствующие им результаты деления этих чисел на 2024.

Количество строк в таблице для ответа избыточно.

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        26.  Тип 26 № 27881

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

 

Задание 26

 

В первой строке входного файла находятся два числа: S  — размер свободного места на диске (натуральное число, не превышающее 10 000) и N  — количество пользователей (натуральное число, не превышающее 5000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов  — 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар  — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

 

        27.  Тип 27 № 55644

Дана последовательность натуральных чисел. Назовём парой любые два числа из последовательности. Необходимо определить количество пар, в которых десятичная запись произведения чисел в паре заканчивается ровно на 6 нулей.

Входные данные.

 

Файл А

Файл В

 

Первая строка входного файла содержит целое число N  — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число, не превышающее 109. Гарантируется, что число в ответе не превышает 2 · 109.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала искомое количество пар для файла A, затем  — для файла B.

 

Ответ:

Показать полностью

Просмотр содержимого документа
«ЕГЭ 2025. Февраль. Информатика Вариант 7»

РЕШУ ЕГЭ — информатика

Вариант № 17467090

1.  Тип 1 № 10404

На рисунке схема дорог Н-⁠ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

 

П1

П2

П3

П4

П5

П6

П7

П1

59

22

27

П2

59

24

44

10

21

П3

24

25

9

П4

22

44

8

32

П5

10

25

П6

27

8

11

П7

21

9

32

11

 

Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Г в пункт К. В ответе запишите целое число.

2.  Тип 2 № 27371

Логическая функция F задаётся выражением ((x ∧ ¬y) → (¬z ∨ ¬w)) ∧ ((w → x) ∨ y). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

 

?

?

?

?

F

1

1

1

0

0

0

0

1

0

 

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

3.  Тип 3 № 37493

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

3.xlsx

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

ID операции

Дата

ID магазина

Артикул

Тип операции

Количество упаковок,
шт.

Цена,
руб./⁠шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

Артикул

Отдел

Наименование

Ед. изм.

Количество
в упаковке

Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

ID магазина

Район

Адрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, сколько рублей потребовалось магазинам Заречного района для закупки чечевицы красной за период с 1 по 10 июня включительно.

В ответе запишите только число.

4.  Тип 4 № 13481

Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В, Г использовали соответственно кодовые слова 000, 001, 10, 11. Укажите кратчайшее возможное кодовое слово для буквы Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

 

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

5.  Тип 5 № 9190

Автомат получает на вход трёхзначное число. По этому числу строится новое число по следующим правилам.

1.  Складываются первая и вторая, а также вторая и третья цифры исходного числа.

2.  Полученные два числа записываются друг за другом в порядке возрастания (без разделителей).

Пример. Исходное число: 843. Суммы: 8 + 4  =  12; 4 + 3  =  7. Результат: 712.

 

Сколько существует чисел, в результате обработки которых автомат выдаст число 1216?

6.  Тип 6 № 47310

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси абсцисс, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 4 [Вперёд 6 Направо 150 Вперёд 6 Направо 30].

Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.

7.  Тип 7 № 11110

Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 320 × 640 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.

8.  Тип 8 № 15626

Все 6-⁠буквенные слова, составленные из букв А, О, У, записаны в обратном алфавитном порядке. Вот начало списка:

1.  УУУУУУ

2.  УУУУУО

3.  УУУУУА

4.  УУУУОУ

...

 

На каком месте от начала списка находится слово ОУУУОО.

9.  Тип 9 № 63025

Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел.

Определите количество строк таблицы, для чисел которых одновременно выполнены все следующие условия:

—  в строке есть повторяющиеся числа;

—  максимальное число в строке не повторяется;

—  сумма всех повторяющихся чисел в строке больше максимального числа этой строки. При подсчёте суммы повторяющихся чисел каждое число учитывается столько раз, сколько оно встречается.

В ответе запишите число  — количество строк, удовлетворяющих заданным условиям.

Задание 9

10.  Тип 10 № 45244

Текст романа Льва Николаевича Толстого «Анна Каренина» представлен в виде файла формата «.docx». Откройте его и определите, сколько раз встречается в тексте отдельное слово «душа» со строчной буквы.

В ответе запишите только число.

Задание 10

11.  Тип 11 № 27239

Каждый сотрудник предприятия получает электронный пропуск, на котором записаны личный код сотрудника и срок действия пропуска. Личный код состоит из 14 символов, каждый из которых может быть одной из 26 заглавных латинских букв или 10 цифр. Для записи кода на пропуске используют посимвольное кодирование, все символы кодируют одинаковым минимально возможным количеством битов. Срок действия записывается как номер года (число от 0 до 80, означающее год от 2000 до 2080) и номер месяца (число от 1 до 12). Номер года и номер месяца записаны на пропуске как двоичные числа, каждое из них занимает минимально возможное количество битов.

Вся информация на пропуске упакована так, чтобы занимать минимально возможное количество байтов. Сколько байтов занимает вся информация на пропуске? В ответе запишите только целое число  — количество байтов.

12.  Тип 12 № 27543

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка

исполнителя при этом не изменяется.

 

Цикл

    ПОКА условие

        последовательность команд

    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие

        ТО команда1

        ИНАЧЕ команда2

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда1 (если условие ложно)

 

Дана программа для Редактора:

НАЧАЛО

ПОКА нашлось (01) ИЛИ нашлось (02) ИЛИ нашлось (03)

    заменить (01, 103)

    заменить (02, 10)

    заменить (03, 210)

КОНЕЦ ПОКА

КОНЕЦ

 

Известно, что исходная строка начинается с цифры 0, а далее содержит 12 цифр 1, 15 цифр 2 и 17 цифр 3, расположенных в произвольном порядке. Сколько цифр 2 будет в строке, которая получится после выполнения данной программы?

13.  Тип 13 № 2236

В терминологии сетей TCP/⁠IP маской подсети называется 32-⁠разрядное двоичное число, определяющее, какие именно разряды IP-⁠адреса компьютера являются общими для всей подсети,  — в этих разрядах маски стоит 1. Обычно маски записываются в виде четверки десятичных чисел  — по тем же правилам, что и IP-⁠адреса. Для некоторой подсети используется маска 255.255.254.0. Сколько различных адресов компьютеров теоретически допускает эта маска, если два адреса (адрес сети и широковещательный) не используют?

14.  Тип 14 № 48395

Операнды арифметического выражения записаны в системе счисления с основаниями 18 и 12:

28x218 + 93x512.

В записи чисел переменной x обозначена неизвестная цифра из алфавита десятичной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 133. Для найденного значения x вычислите частное от деления значения арифметического выражения на 133 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

15.  Тип 15 № 16045

Для какого наибольшего целого неотрицательного числа A выражение

(y + 2x ≠ 48) ∨ (A x) ∨ (A y)

тождественно истинно, то есть принимает значение 1 при любых целых неотрицательных x и y?

16.  Тип 16 № 62470

Алгоритм вычисления значения функции F(n), где n  — целое число, задан следующими соотношениями:

если

если

 

Определите количество значений n на отрезке [4 · 620; 5 · 620], для которых

17.  Тип 17 № 60259

В файле содержится последовательность натуральных чисел, каждое из которых не превышает 100 000. Определите количество троек элементов последовательности, в которых ровно два из трёх элементов являются трёхзначными числами, а сумма элементов тройки не больше максимального элемента последовательности, оканчивающегося на 13. Гарантируется, что в последовательности есть хотя бы одно число, оканчивающееся на 13. В ответе запишите количество найденных троек чисел, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

Задание 17

Ответ:

18.  Тип 18 № 27671

Квадрат разлинован на N×N клеток (1 N

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков  — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1

8

8

4

10

1

1

3

1

3

12

2

2

3

5

6

 

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

19.  Тип 19 № 28099

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 37.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

20.  Тип 20 № 28100

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 37.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—  Петя не может выиграть за один ход;

—  Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21.  Тип 21 № 28101

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 37.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

—  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22.  Тип 22 № 68523

В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Приостановка выполнения процесса не допускается. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы A и B могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор

процесса (ID), во втором столбце таблицы  — время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс независимый, то в таблице указано значение 0.

Типовой пример организации данных в файле:

 

ID процесса B

Время выполнения
процесса B (мс)

ID процесса(ов) A

101

4

0

102

3

0

103

1

101; 102

104

7

103

 

Определите максимальную продолжительность отрезка времени (в мс), в течение которого возможно одновременное выполнение пяти процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.

Задание 22

23.  Тип 23 № 13368

Исполнитель Плюс преобразует число на экране.

У исполнителя есть две команды, которым присвоены номера.

1.  Прибавить 2.

2.  Прибавить 5.

Первая команда увеличивает число на экране на 2, вторая увеличивает это число на 5. Программа для исполнителя Плюс  — это последовательность команд.

Сколько существует программ, которые число 1 преобразуют в число 20?

24.  Тип 24 № 27692

Текстовый файл состоит не более чем из 106 символов A, B и C. Определите максимальное количество идущих подряд символов B.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24

25.  Тип 25 № 60267

Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:

—  символ «?» означает ровно одну произвольную цифру;

—  символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300405.

Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2157*4, делящиеся на 2024 без остатка. В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце  — соответствующие им результаты деления этих чисел на 2024.

Количество строк в таблице для ответа избыточно.

Ответ:

26.  Тип 26 № 27881

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

Задание 26

В первой строке входного файла находятся два числа: S  — размер свободного места на диске (натуральное число, не превышающее 10 000) и N  — количество пользователей (натуральное число, не превышающее 5000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов  — 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар  — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

27.  Тип 27 № 55644

Дана последовательность натуральных чисел. Назовём парой любые два числа из последовательности. Необходимо определить количество пар, в которых десятичная запись произведения чисел в паре заканчивается ровно на 6 нулей.

Входные данные.

Файл А

Файл В

Первая строка входного файла содержит целое число N  — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число, не превышающее 109. Гарантируется, что число в ответе не превышает 2 · 109.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала искомое количество пар для файла A, затем  — для файла B.

 

Ответ:



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!