РЕШУ ЕГЭ — информатика Вариант № 17467091 1. Тип 1 № 56501
На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что одна дорога в таблице отмечена неверно: из двух пунктов, которые соединяет эта дорога, правильно указан только один. В результате в одном из пунктов в таблице одной дороги не хватает, а в другом — появилась лишняя дорога. Определите длину дороги АД.
Логическая функция F задаётся выражением ((x ∧ y) → (¬z ∨ w)) ∧ ((¬w → x) ∨ ¬y). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
?
?
?
?
F
1
1
1
0
0
0
0
1
0
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции
Дата
ID магазина
Артикул
Тип операции
Количество упаковок, шт.
Цена, руб./шт.
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул
Отдел
Наименование
Ед. изм.
Количество в упаковке
Поставщик
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
ID магазина
Район
Адрес
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, сколько килограмм лапши гречневой поступило в магазины Первомайского района за период с 1 по 10 июня включительно.
Для передачи сообщений, составленных из заглавных букв русского алфавита, используется неравномерный двоичный код, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова, назначенные для некоторых букв: Б — 01, В — 001, Е — 0001, Ш — 111. Какое наименьшее количество двоичных знаков может содержать сообщение, кодирующее слово КУКУШКА?
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвост, означающая переход к перемещению 6eз рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n — целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m — целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 ... КомандаS] означает, что последовательность из S команд повторится k раз.
Черепахе был дан для исполнения следующий алгоритм:
Определите, сколько точек с целочисленными координатами будут находиться внутри объединения фигур, ограниченных заданными алгоритмом линиями, включая точки на границах этого объединения.
Для хранения в информационной системе документы сканируются с разрешением 300 dpi и цветовой системой, содержащей 216 = 65 536 цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 9 Мбайт. В целях экономии было решено перейти на разрешение 200 dpi и цветовую систему, содержащую 256 цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?
Вася составляет 5-буквенные слова, в которых встречаются только буквы А, Б, В, Г, причём буква А появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Вася?
В каждой строке электронной таблицы записаны шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых одновременно выполнены все следующие условия:
— все числа в строке различны;
— среднее арифметическое наибольшего и наименьшего чисел в строке больше среднего арифметического всех остальных чисел.
В ответе запишите число — количество строк, удовлетворяющих заданным условиям.
Определите, сколько раз в тексте главы II повести А. И. Куприна «Поединок» встречается сочетание букв «все» или «Все» только в составе других слов, но не как отдельное слово. В ответе укажите только число.
При регистрации в компьютерной системе для каждого пользователя формируется индивидуальный идентификатор, состоящий из 14 символов. Для построения идентификатора используют только латинские буквы (26 заглавных и 26 строчных букв). В базе данных для хранения сведений о каждом пользователе отведено одинаковое минимально возможное целое число байт. При этом используют посимвольное кодирование идентификаторов, все символы кодируют одинаковым минимально возможным количеством бит. Кроме идентификатора для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено 19 байт на каждого пользователя.
Сколько байт нужно для хранения сведений о 25 пользователях? В ответе запишите только целое число — количество байт.
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка
исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для Редактора:
НАЧАЛО
ПОКА нашлось (11)
ЕСЛИ нашлось (112)
ТО заменить (112, 6)
ИНАЧЕ заменить (11, 3)
КОНЕЦ ПОКА
КОНЕЦ
Исходная строка содержит десять единиц и три двойки, других цифр нет, точный порядок расположения единиц и двоек неизвестен. Какую наибольшую сумму цифр может иметь строка, которая получится после выполнения программы?
Маской подсети называется 32-разрядное двоичное число, которое определяет, какая часть IP-адреса компьютера относится к адресу сети, а какая часть IP-адреса определяет адрес компьютера в подсети. В маске подсети старшие биты, отведенные в IP-адресе компьютера для адреса сети, имеют значение 1; младшие биты, отведенные в IP-адресе компьютера для адреса компьютера в подсети, имеют значение 0.
Если маска подсети 255.255.224.0 и IP-адрес компьютера в сети 206.158.124.67, то номер компьютера в сети равен _____.
Операнды арифметического выражения записаны в системе счисления с основанием 14:
1x56314 + 871x314
В записи чисел переменной x обозначена неизвестная цифра из алфавита четырнадцатеричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 24. Для найденного значения x вычислите частное от деления значения арифметического выражения на 24 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.
На числовой прямой даны два отрезка: P = [17, 40] и Q = [20, 57]. Отрезок A таков, что приведённая ниже формула истинна при любом значении переменной х:
Файл содержит последовательность целых чисел, модуль которых находится в интервале от 100 до 10 000. Назовём парой два идущих подряд элемента последовательности.
Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
В компьютерной системе необходимо выполнить некоторое количество вычислительных процессов, которые могут выполняться параллельно или последовательно. Для запуска некоторых процессов необходимы данные, которые получаются как результаты выполнения одного или двух других процессов — поставщиков данных. Все независимые процессы (не имеющие поставщиков данных) запускаются в начальный момент времени. Если процесс B (зависимый процесс) получает данные от процесса A (поставщика данных), то выполнение процесса B начинается сразу же после завершения процесса A. Количество одновременно выполняемых процессов может быть любым, длительность процесса не зависит от других параллельно выполняемых процессов.
Исполнитель Вычислитель преобразует число на экране.
У исполнителя есть три команды, которым присвоены номера.
1. Прибавить 2.
2. Умножить на 2.
3. Прибавить 3.
Первая команда увеличивает число на экране на 2, вторая умножает его на 2, третье увеличивает его на 3.
Программа для исполнителя Вычислитель — это последовательность команд.
Сколько существует программ, которые преобразуют исходное число 2 в число 22 и при этом траектория вычислений содержит число 11?
Траектория вычислений программы — это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 9, 12, 24.
Текстовый файл состоит из символов T, U, V, W, X, Y и Z.
Определите в прилагаемом файле максимальное количество идущих подряд символов (длину непрерывной подпоследовательности), среди которых символ T встречается ровно 100 раз.
Для выполнения этого задания следует написать программу.
В заявке указаны время сдачи багажа и время освобождения ячейки (в минутах от начала суток). Багаж одного пассажира размещается в одной свободной ячейке с минимальным номером. Ячейки пронумерованы начиная с единицы. Размещение багажа в ячейке или её освобождение происходит в течение 1 мин. Багаж можно поместить в только что освобождённую ячейку начиная со следующей минуты.
Если в момент сдачи багажа свободных ячеек нет, то пассажир уходит. Определите, сколько пассажиров сможет сдать свой багаж в течение 24 ч и какой номер будет иметь ячейка, которую займут последней. Если таких ячеек несколько, укажите минимальный номер ячейки.
Входные данные.
В первой строке входного файла находится натуральное число K, не превышающее 1000, — количество ячеек в камере хранения.
Во второй строке — натуральное число N (N ≤ 1000), обозначающее количество пассажиров. Каждая из следующих N строк содержит два натуральных числа, каждое из которых не превышает 1440: указанное в заявке время размещения багажа в ячейке и время освобождения ячейки (в минутах от начала суток).
Запишите в ответе два числа: количество пассажиров, которые смогут воспользоваться камерой хранения, и номер последней занятой ячейки.
Типовой пример организации данных во входном файле:
2
5
30 60
40 1000
59 60
61 1000
1010 1440
При таких исходных данных положить вещи в камеру хранения смогут первый, второй, четвёртый и пятый пассажиры.
Последний пассажир положит вещи в ячейку 1, так как ячейки 1 и 2 будут свободны.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
По каналу связи передаётся последовательность целых неотрицательных чисел — показания прибора, полученные с интервалом в 1 мин. в течение T мин. (T — целое число). Прибор измеряет количество атмосферных осадков, полученное регистратором за минуту, предшествующую моменту регистрации, и передаёт это значение в условных единицах измерения. Определите два таких переданных числа, чтобы между моментами их передачи прошло не менее K мин., а их сумма была максимально возможной. Укажите найденное суммарное количество осадков.
Даны два входных файла (файл A и файл B), каждый из которых в первой строке содержит натуральное число K — количество минут, которое должно пройти между двумя передачами показаний, а во второй — количество переданных показаний N (1 ≤ N ≤ 10 000 000, N > K). В каждой из следующих N строк находится одно целое неотрицательное число, не превышающее 1 000 000, обозначающее количество осадков за соответствующую минуту.
Выходные данные.
Запишите в ответе два числа: сначала значение искомой величины для файла A, затем — для файла B.
Типовой пример организации данных во входном файле:
3
5
15
10
200
0
30
При таких исходных данных максимально возможное суммарное количество осадков равно 45 — это сумма осадков, выпавших на первой и пятой минутах.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Просмотр содержимого документа
«ЕГЭ 2025. Февраль. Информатика Вариант 8»
РЕШУ ЕГЭ — информатика
Вариант № 17467091
1. Тип 1 № 56501
На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что одна дорога в таблице отмечена неверно: из двух пунктов, которые соединяет эта дорога, правильно указан только один. В результате в одном из пунктов в таблице одной дороги не хватает, а в другом — появилась лишняя дорога. Определите длину дороги АД.
П1
П2
П3
П4
П5
П6
П7
П8
П1
17
14
29
35
П2
17
32
25
16
П3
32
15
23
П4
14
24
П5
25
15
18
34
П6
29
18
12
П7
16
23
34
П8
35
24
12
2. Тип 2 № 28538
Логическая функция F задаётся выражением ((x ∧ y) → (¬z ∨ w)) ∧ ((¬w → x) ∨ ¬y). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
?
?
?
?
F
1
1
1
0
0
0
0
1
0
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
3. Тип 3 № 37490
В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.
3.xlsx
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции
Дата
ID магазина
Артикул
Тип операции
Количество упаковок, шт.
Цена, руб./шт.
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул
Отдел
Наименование
Ед. изм.
Количество в упаковке
Поставщик
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
ID магазина
Район
Адрес
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, сколько килограмм лапши гречневой поступило в магазины Первомайского района за период с 1 по 10 июня включительно.
В ответе запишите только число.
4. Тип 4 № 33176
Для передачи сообщений, составленных из заглавных букв русского алфавита, используется неравномерный двоичный код, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова, назначенные для некоторых букв: Б — 01, В — 001, Е — 0001, Ш — 111. Какое наименьшее количество двоичных знаков может содержать сообщение, кодирующее слово КУКУШКА?
5. Тип 5 № 7751
Автомат получает на вход четырёхзначное число. По этому числу строится новое число по следующим правилам:
1. Складываются первая и вторая, а также третья и четвёртая цифры исходного числа.
2. Полученные два числа записываются друг за другом в порядке возрастания (без разделителей).
Укажите наибольшее число, в результате обработки которого автомат выдаст число 117.
6. Тип 6 № 59739
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвост, означающая переход к перемещению 6eз рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n — целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m — целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 ... КомандаS] означает, что последовательность из S команд повторится k раз.
Черепахе был дан для исполнения следующий алгоритм:
Определите, сколько точек с целочисленными координатами будут находиться внутри объединения фигур, ограниченных заданными алгоритмом линиями, включая точки на границах этого объединения.
7. Тип 7 № 33179
Для хранения в информационной системе документы сканируются с разрешением 300 dpi и цветовой системой, содержащей 216 = 65 536 цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 9 Мбайт. В целях экономии было решено перейти на разрешение 200 dpi и цветовую систему, содержащую 256 цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?
8. Тип 8 № 11346
Вася составляет 5-буквенные слова, в которых встречаются только буквы А, Б, В, Г, причём буква А появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Вася?
9. Тип 9 № 61355
В каждой строке электронной таблицы записаны шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых одновременно выполнены все следующие условия:
— все числа в строке различны;
— среднее арифметическое наибольшего и наименьшего чисел в строке больше среднего арифметического всех остальных чисел.
В ответе запишите число — количество строк, удовлетворяющих заданным условиям.
Задание 9
10. Тип 10 № 60252
Определите, сколько раз в тексте главы II повести А. И. Куприна «Поединок» встречается сочетание букв «все» или «Все» только в составе других слов, но не как отдельное слово. В ответе укажите только число.
Задание 10
11. Тип 11 № 14699
При регистрации в компьютерной системе для каждого пользователя формируется индивидуальный идентификатор, состоящий из 14 символов. Для построения идентификатора используют только латинские буквы (26 заглавных и 26 строчных букв). В базе данных для хранения сведений о каждом пользователе отведено одинаковое минимально возможное целое число байт. При этом используют посимвольное кодирование идентификаторов, все символы кодируют одинаковым минимально возможным количеством бит. Кроме идентификатора для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено 19 байт на каждого пользователя.
Сколько байт нужно для хранения сведений о 25 пользователях? В ответе запишите только целое число — количество байт.
12. Тип 12 № 27240
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка
исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для Редактора:
НАЧАЛО
ПОКА нашлось (11)
ЕСЛИ нашлось (112)
ТО заменить (112, 6)
ИНАЧЕ заменить (11, 3)
КОНЕЦ ПОКА
КОНЕЦ
Исходная строка содержит десять единиц и три двойки, других цифр нет, точный порядок расположения единиц и двоек неизвестен. Какую наибольшую сумму цифр может иметь строка, которая получится после выполнения программы?
13. Тип 13 № 2235
Маской подсети называется 32-разрядное двоичное число, которое определяет, какая часть IP-адреса компьютера относится к адресу сети, а какая часть IP-адреса определяет адрес компьютера в подсети. В маске подсети старшие биты, отведенные в IP-адресе компьютера для адреса сети, имеют значение 1; младшие биты, отведенные в IP-адресе компьютера для адреса компьютера в подсети, имеют значение 0.
Если маска подсети 255.255.224.0 и IP-адрес компьютера в сети 206.158.124.67, то номер компьютера в сети равен _____.
14. Тип 14 № 48338
Операнды арифметического выражения записаны в системе счисления с основанием 14:
1x56314 + 871x314
В записи чисел переменной x обозначена неизвестная цифра из алфавита четырнадцатеричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 24. Для найденного значения x вычислите частное от деления значения арифметического выражения на 24 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.
15. Тип 15 № 14277
На числовой прямой даны два отрезка: P = [17, 40] и Q = [20, 57]. Отрезок A таков, что приведённая ниже формула истинна при любом значении переменной х:
¬(x ∈ A) →(((x ∈ P) ⋀ (x ∈ Q)) → (x ∈ A))
Какова наименьшая возможная длина отрезка A?
16. Тип 16 № 38950
Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:
F(0) = 0;
F(n) = F(n / 2), если n 0 и при этом чётно;
F(n) = 1 + F(n − 1), если n нечётно.
Сколько существует таких чисел n, что 1 ≤ n ≤ 500 и F(n) = 8?
17. Тип 17 № 55604
Файл содержит последовательность целых чисел, модуль которых находится в интервале от 100 до 10 000. Назовём парой два идущих подряд элемента последовательности.
Задание 17
Определите количество пар, для которых выполняются следующие условия:
— последняя цифра записи одного из элементов пары совпадает с предпоследней цифрой записи другого элемента;
— ровно один элемент из пары делится без остатка на 7;
— сумма квадратов элементов пары не превышает квадрат наименьшего из элементов последовательности, две последние цифры в записи которого одинаковы.
В ответе запишите два числа: сначала количество найденных пар, затем максимальную величину суммы квадратов элементов этих пар.
Ответ:
18. Тип 18 № 27680
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом должна быть пара чисел 35 и 15.
19. Тип 19 № 28114
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
20. Тип 20 № 28115
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
21. Тип 21 № 28116
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может: добавить в кучу один камень (действие А) или утроить количество камней в куче, а затем убрать из кучи один камень (действие Б). Например, имея кучу из 10 камней, за один ход можно получить кучу из 11 или 29 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 32.
Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
22. Тип 22 № 55639
В компьютерной системе необходимо выполнить некоторое количество вычислительных процессов, которые могут выполняться параллельно или последовательно. Для запуска некоторых процессов необходимы данные, которые получаются как результаты выполнения одного или двух других процессов — поставщиков данных. Все независимые процессы (не имеющие поставщиков данных) запускаются в начальный момент времени. Если процесс B (зависимый процесс) получает данные от процесса A (поставщика данных), то выполнение процесса B начинается сразу же после завершения процесса A. Количество одновременно выполняемых процессов может быть любым, длительность процесса не зависит от других параллельно выполняемых процессов.
Задание 22
В таблице представлены идентификатор (ID) каждого процесса, его длительность и ID поставщиков данных для зависимых процессов.
Определите количество активных процессов через 140 мс после запуска первого процесса.
23. Тип 23 № 15990
Исполнитель Вычислитель преобразует число на экране.
У исполнителя есть три команды, которым присвоены номера.
1. Прибавить 2.
2. Умножить на 2.
3. Прибавить 3.
Первая команда увеличивает число на экране на 2, вторая умножает его на 2, третье увеличивает его на 3.
Программа для исполнителя Вычислитель — это последовательность команд.
Сколько существует программ, которые преобразуют исходное число 2 в число 22 и при этом траектория вычислений содержит число 11?
Траектория вычислений программы — это последовательность результатов выполнения всех команд программы. Например, для программы 132 при исходном числе 7 траектория будет состоять из чисел 9, 12, 24.
24. Тип 24 № 60266
Текстовый файл состоит из символов T, U, V, W, X, Y и Z.
Определите в прилагаемом файле максимальное количество идущих подряд символов (длину непрерывной подпоследовательности), среди которых символ T встречается ровно 100 раз.
Для выполнения этого задания следует написать программу.
24.txt
25. Тип 25 № 59773
Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:
— символ «?» означает ровно одну произвольную цифру;
— символ «*» означает любую последовательность цифр произвольной длины; в том числе «∗» может задавать и пустую последовательность.
Например, маске 123*4?5 соответствуют числа 123405 и 12300405.
Найдите все натуральные числа, не превосходящие 108, для которых выполнены все условия:
— соответствуют маске 3?1*57;
— делятся на 1991 без остатка.
В ответе запишите в первом столбце таблицы все найденные числа в порядке
возрастания, справа от каждого числа их частное от деления на 1991.
Ответ:
26. Тип 26 № 57433
Входной файл содержит заявки пассажиров, желающих сдать свой багаж в камеру хранения.
Задание 26
В заявке указаны время сдачи багажа и время освобождения ячейки (в минутах от начала суток). Багаж одного пассажира размещается в одной свободной ячейке с минимальным номером. Ячейки пронумерованы начиная с единицы. Размещение багажа в ячейке или её освобождение происходит в течение 1 мин. Багаж можно поместить в только что освобождённую ячейку начиная со следующей минуты.
Если в момент сдачи багажа свободных ячеек нет, то пассажир уходит. Определите, сколько пассажиров сможет сдать свой багаж в течение 24 ч и какой номер будет иметь ячейка, которую займут последней. Если таких ячеек несколько, укажите минимальный номер ячейки.
Входные данные.
В первой строке входного файла находится натуральное число K, не превышающее 1000, — количество ячеек в камере хранения.
Во второй строке — натуральное число N (N ≤ 1000), обозначающее количество пассажиров. Каждая из следующих N строк содержит два натуральных числа, каждое из которых не превышает 1440: указанное в заявке время размещения багажа в ячейке и время освобождения ячейки (в минутах от начала суток).
Запишите в ответе два числа: количество пассажиров, которые смогут воспользоваться камерой хранения, и номер последней занятой ячейки.
Типовой пример организации данных во входном файле:
2
5
30 60
40 1000
59 60
61 1000
1010 1440
При таких исходных данных положить вещи в камеру хранения смогут первый, второй, четвёртый и пятый пассажиры.
Последний пассажир положит вещи в ячейку 1, так как ячейки 1 и 2 будут свободны.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
Ответ:
27. Тип 27 № 59854
По каналу связи передаётся последовательность целых неотрицательных чисел — показания прибора, полученные с интервалом в 1 мин. в течение T мин. (T — целое число). Прибор измеряет количество атмосферных осадков, полученное регистратором за минуту, предшествующую моменту регистрации, и передаёт это значение в условных единицах измерения. Определите два таких переданных числа, чтобы между моментами их передачи прошло не менее K мин., а их сумма была максимально возможной. Укажите найденное суммарное количество осадков.
Файл А
Файл В
Входные данные.
Даны два входных файла (файл A и файл B), каждый из которых в первой строке содержит натуральное число K — количество минут, которое должно пройти между двумя передачами показаний, а во второй — количество переданных показаний N (1 ≤ N ≤ 10 000 000, NK). В каждой из следующих N строк находится одно целое неотрицательное число, не превышающее 1 000 000, обозначающее количество осадков за соответствующую минуту.
Выходные данные.
Запишите в ответе два числа: сначала значение искомой величины для файла A, затем — для файла B.
Типовой пример организации данных во входном файле:
3
5
15
10
200
0
30
При таких исходных данных максимально возможное суммарное количество осадков равно 45 — это сумма осадков, выпавших на первой и пятой минутах.
Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.
РџРѕРТвЂВВВВелРСвЂВВВВтесь Р РЋР С“ Р В Р’В Р СћРІР‚ВВВВСЂСѓР·СЊСЏРСВВВВВР В Р’В Р РЋРІР‚ВВВВ