СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Касательная к окружности, урок геометрии 8 класс

Категория: Геометрия

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Касательная к окружности, урок геометрии 8 класс»

Тема урока: КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ.

Урок закрепления новых знаний. 8класс

ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ: Фронтальная (коллективная)

Цели урока:

1.Образовательные:

- способствовать применению учащимися полученных знаний при решении задач.

2. Воспитательные:

Формирование компетентностей:

-личностного самосовершенствования;

-информационной;

- социальной.

3. Развивающие

Развивать:

- грамотную математическую речь;

- способствовать развитию творческой деятельности;

- формировать информационную и социальную компетентности.

Мотивация урока

Учиться надо весело, чтоб хорошо учиться!

ПЛАН урока:

организационный момент – 1 мин.

актуализация опорных знаний -5 мин.

изучение нового материала -10 мин.

физкультминутка -1 мин.

работа с учебником -10 мин

решим задачу – 10мин

подведение итогов урока -3 мин.

Актуализация опорных знаний обучающихся

  1. Проверка домашнего задания.

Привести доказательства признака касательной к окружности.

Заслушать одного ученика.

II. Решение задач.

1. Две окружности разных радиусов внешне касаются. Докажите, что отрезок их общей касательной, заключенный между точками касания, есть среднее пропорциональное между диаметрами этих окружностей.

ΔОО1С, С = 90°

ОО1 = R + r

CО = R – r

= (r + R)2 – (Rr)2 =
= r2 + 2rR + R2R2 + 2rRr2.

.

2. Через концы диаметра АВ окружности проведены две касательные к ней. Третья касательная пересекает первые две в точках С и D. Докажите, что квадрат радиуса этой окружности равен произведению отрезков СА и ВD.

Решение

1) Очевидно, что СОD – прямоугольный.

2) ОK2 = СK · KD, но АС = СK, ВD = KD, поэтому ОK2 = АС · ВD.


III. Самостоятельная работа.

Вариант I

1. и KN – отрезки касательных, проведенных из точки K к окружности с центром О. Найдите и KN, если ОK = 12 см, МОN = 120°.

2. Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая ВD касается окружности с центром А и радиусом, равным ОС.

Вариант II

1. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 cм. ВАС = 120°.

2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВD. Докажите, что прямая ВD касается окружности с центром с и радиусом, равным АD.

Вариант III
(для более подготовленных учащихся)

1. Прямые АВ, АС, MN – касательные к окружности. Найдите отрезки касательных АВ и АС, если периметр треугольника АMN равен 24 см.

2. Отрезок СD – высота прямоугольного треугольника АВС, проведенная из вершины прямого угла С. Найдите радиус окружности с центром А, которая касается прямой СD, если СD = 4 см, АВ = 12 см.

IV. Итоги урока.

Домашнее задание: вопросы 1–7, с. 187; № 648.

Для желающих.

Две окружности разных диаметров внешне касаются. К ним проведены две общие касательные АС и ВD, где А и В – точки касания с первой окружностью, а С и D – со второй. Докажите АСDВ – равнобокая трапеция.


Рефлексия

Я работал на уроке на оценку…………………

Я подтвердил свои знания …………………….

Задания были: Легкие

Трудные

Мне под силу.

Я не понял материал……………………………

Потому что ……………………………………













Вариант I

1. и KN – отрезки касательных, проведенных из точки K к окружности с центром О. Найдите и KN, если ОK = 12 см, МОN = 120°.

2. Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая ВD касается окружности с центром А и радиусом, равным ОС.

Вариант II

1. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 cм. ВАС = 120°.

2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВD. Докажите, что прямая ВD касается окружности с центром с и радиусом, равным АD.

_______________________________________________________________________________________

Вариант I

1. и KN – отрезки касательных, проведенных из точки K к окружности с центром О. Найдите и KN, если ОK = 12 см, МОN = 120°.

2. Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая ВD касается окружности с центром А и радиусом, равным ОС.

Вариант II

1. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 cм. ВАС = 120°.

2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВD. Докажите, что прямая ВD касается окружности с центром с и радиусом, равным АD.

_______________________________________________________________________________________

Вариант I

1. и KN – отрезки касательных, проведенных из точки K к окружности с центром О. Найдите и KN, если ОK = 12 см, МОN = 120°.

2. Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая ВD касается окружности с центром А и радиусом, равным ОС.

Вариант II

1. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 cм. ВАС = 120°.

2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВD. Докажите, что прямая ВD касается окружности с центром с и радиусом, равным АD.

_______________________________________________________________________________________

Вариант I

1. и KN – отрезки касательных, проведенных из точки K к окружности с центром О. Найдите и KN, если ОK = 12 см, МОN = 120°.

2. Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая ВD касается окружности с центром А и радиусом, равным ОС.

Вариант II

1. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 cм. ВАС = 120°.

2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВD. Докажите, что прямая ВD касается окружности с центром с и радиусом, равным АD.

_______________________________________________________________________________________

Вариант I

1. и KN – отрезки касательных, проведенных из точки K к окружности с центром О. Найдите и KN, если ОK = 12 см, МОN = 120°.

2. Диагонали ромба АВСD пересекаются в точке О. Докажите, что прямая ВD касается окружности с центром А и радиусом, равным ОС.

Вариант II

1. Найдите отрезки касательных АВ и АС, проведенных из точки А к окружности радиуса r, если r = 9 cм. ВАС = 120°.

2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВD. Докажите, что прямая ВD касается окружности с центром с и радиусом, равным АD.

_______________________________________________________________________________________