СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Лекция Углеводороды

Категория: Химия

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Лекция Углеводороды»

Лекция 2. Углеводороды.

План

  1. Алканы. Циклоалканы

  2. Алкены. Алкадиены

  3. Алкины

  4. Арены


Углеводороды. Гомология и изомерия. Химические свойства и способы получения

  1. Алканы. Циклоалканы

Алканы (парафины) – это соединения углерода с водородом, в молекулах которых атомы углерода соединены между собой одинарной связью (предельные углеводороды). Общая формула гомологического ряда алканов СnН2n+2. Радикал, получающийся при отрыве одного атома водорода от молекулы предельного углеводорода, называется алкилож, общая формула алкилов СnН2n+1.

Формулы и названия первых шести алканов (С1—С6) и отвечающих им радикалов:




Для радикала С5Н11 использование названия амил не рекомендуется. Для составления названий алканов с разветвленной цепью, например




выбирают самую длинную углеродную цепь (в примере – 5 атомов) и получают основу названия (5 – пентан). Нумеруют цепь (от 1 до 5) так, чтобы заместители (—СН3) получили наименьшие номера (2 и 3). В названии арабскими цифрами указывают положение заместителей, а приставками ди – 2, три – 3, тетра – 4 и т. д. – число одинаковых заместителей. Таким образом, в нашем примере алкан должен быть назван 2,3-диметилпентан.

При наличии разных заместителей их названия расставляют по алфавиту, т. е., например, сначала метил, а затем этил.

Для некоторых разветвленных предельных углеводородов используются, наравне с систематическими, традиционные названия, например, для алканов состава С4Н10 и С5Н12 с формулами:




Такие же названия используются для разветвленных радикалов:




При обычных условиях первые алканы – метан, этан, пропан и бутан (С1—С4) – представляют собой газы без цвета и запаха, малорастворимые в воде. Последующие гомологи (С5—C15) – жидкости (при 20 °C), высшие гомологи (C16 и выше) – твердые вещества.

В алканах атомные орбитали углерода имеют sр3-гибридизацию; четыре электронных облака атома углерода направлены в вершины тетраэдра под углами 109,5°. Ковалентные связи, образуемые каждым атомом углерода, в алканах малополярны.

Поэтому алканы – сравнительно инертные вещества, вступают только в реакции замещения, протекающие с симметричным (радикальным) разрывом связей С – Н. Эти реакции обычно идут в жестких условиях (высокая температура, освещение). В результате становится возможным замещение водорода на галоген (CI, Br) и нитрогруппу (NO2), например, при обработке метана хлором:




Вторая и последующие стадии реакции протекают легче, чем первая, из-за смещения электронной плотности к атому хлора и увеличения подвижности остающихся атомов водорода. Названия продуктов: СН3Cl – хлорметан, СН2Cl2 – дихлорметан, СНCl3 – трихлорметан (хлороформ), СCl4 – тетрахлорметан (тетрахлорид углерода).

В тех алканах, где кроме первичных есть также вторичные и третичные атомы углерода, замещение обычно протекает с образованием смеси однозамещенных продуктов (т. е. в каждой молекуле замещается один атом водорода), например:




Циклоалканы – предельные углеводороды циклического строения, общая формула гомологического ряда СnH2n (п   3), формула совпадает с таковой для алкенов. Важнейшие циклоалканы:




При комнатной температуре С5Н10 и С6Н12 – бесцветные жидкости, малорастворимые в воде. Химические свойства циклоалканов подобны свойствам алканов, например:




Получение: источниками алканов и циклоалканов в промышленности служат нефть, природный газ, каменный уголь. В лаборатории применяют такие способы синтеза алканов:

1) реакция Вюрца – действие натрия на галогенпроизводные углеводородов:




2) каталитическое гидрирование этиленовых углеводородов (катализаторы Pt, Pd, Ni):




3) сплавление солей карбоновых кислот с гидроксидом натрия:




Циклоалканы синтезируют из дигалогенпроизводных алканов:




Алканы широко используются как исходное сырье в химической промышленности, моторное топливо (бензин, керосин и др.); циклоалканы применяются в органическом синтезе.

При горении метана выделяется много теплоты:




Поэтому его (в виде природного газа) применяют в качестве топлива в быту и в промышленности.

  1. Алкены. Алкадиены

Алкены (олефины) – это углеводороды, в молекулах которых содержатся атомы углерода, соединенные между собой двойной связью (непредельные углеводороды ряда этилена). Простейший представитель — этилен С2Н4, общая формула гомологического ряда этиленовых углеводородов СnН2n (при п ? 2).

Систематические названия олефинов производятся от корней названий алканов с заменой суффикса – ан  – ен:




Сохраняются также традиционные названия с заменой суффикса – ан на – илен: С2Н4 – этилен, С3Н6 – пропилен, С4Н8 – бутилен; использование названия амилен для алкена С5Н10 не рекомендуется.

Положение двойной связи С=С в изомерах строения (начиная с алкена С4) указывается цифрой после названия:




Радикал этилена – этенил СН2=СН – обычно называют винил, пропена – пропенил СН2=СН – СН2 – именуют аллил.

Другой вид изомерии в непредельных углеводородах, помимо структурной изомерии, осуществляется потому, что атомы углерода, образующие двойную связь, находятся в sр2-гибридном состоянии; ?-составляющая двойной связи С=С и ?-связи С – Н лежат в одной плоскости под углом 120° друг к другу, а ?-составляющая двойной связи С=С представляет собой электронное облако, вытянутое в направлении, перпендикулярном плоскости о-связей. Следствием такого строения алкенов является возможность геометрической изомерии (или цис-транс-изомерии) в зависимости от положения заместителей (атомов или радикалов):




(цис – от лат. «рядом, по одну сторону», транс – от лат. «напротив, по разные стороны»).

Алкены С2—С4 при комнатной температуре – бесцветные газы со слабым запахом нефти, малорастворимые в воде; алкены С5—C18 – жидкости, алкены C19 и выше – твердые вещества.

Важнейшие химические свойства алкенов определяются тем, что в силу меньшей прочности ?-связи (по сравнению с ?-связью) она легко разрывается, в результате чего протекают реакции присоединения и образуются насыщенные органические соединения. Как правило, такие реакции идут в мягких условиях, часто на холоду и в растворителях, например воде, тетрахлорметане СCl4 и др.:




Аналогично протекает взаимодействие алкенов с бромоводородом:




Присоединение галогеноводородов к несимметричным алкенам теоретически может привести к двум продуктам:




Согласно правилу Марковникова, присоединение галогеноводородов к несимметричным алкенам протекает так, что водород направляется к атому углерода, который уже содержит большее число атомов водорода. В приведенной выше реакции продуктом будет 2-иодпропан СН3СН(I)СН3.

По правилу Марковникова протекает и реакция гидратации, т. е. реакция присоединения воды в присутствии серной кислоты. Она происходит в две стадии:

а) вначале образуется алкилсерная кислота, т. е. H2SO4 присоединяется к алкену:




б) затем происходит ее необратимый гидролиз:




Алкены обесцвечивают раствор перманганата калия на холоду в нейтральной среде, при этом образуются гликоли (двухатомные спирты):




Алкены способны вступать в реакции полимеризации:




Качественные реакции на алкены – обесцвечивание бромной воды и раствора КMnO4 (уравнения реакций см. выше).

Алкадиены – непредельные углеводороды, в молекулах которых содержатся две связи С=С. Общая формула алкадиенов СnН2n-2 (n ? 3), формула совпадает с таковой для алкинов.

Примеры:




Большое практическое значение имеют сопряженные диены, в молекулах которых связи С=С разделены одинарной связью С – С:




Дивинил и изопрен – традиционные названия.

Дивинил – бесцветный, легко сжижающийся (при -4,5 °C) газ, изопрен – низкокипящая (34,1 °C) жидкость.

Алкадиены вступают в те же реакции присоединения, что и алкены. Сопряженные диены имеют особые свойства, в частности, в реакциях присоединения; они образуют продукты 1,4-присоединения с одной двойной связью посредине:




(далее возможно образование 1, 2, 3, 4-тетрабромбутана).

Алкадиены способны полимеризоваться с образованием каучуков:




Полиметилбутадиеновый каучук – это полимер, существующий в природе (натуральный каучук), а полибутадиеновый каучук получен искусственно (С. В. Лебедев, 1932 г.) и называется синтетическим каучуком.

Получение: для алкенов в промышленности используют метод каталитического дегидрирования алканов:




В лаборатории алкены получают:

1) дегидратацией спиртов (отщепление воды от спиртов):




2) дегидрогалогенированиеж – отщеплением галогеноводорода от моногалогенопроизводного под действием спиртового раствора щелочи:




3) дегалогенированиеж – отщеплением галогенов от дигалогенопроизводных, в которых атомы галогена находятся у соседних атомов углерода:




Промышленное получение дивинила:

1) дегидрирование бутана:




2) способ Лебедева – одновременное отщепление воды и водорода от этанола на катализаторе (ZnO/Al2O3):




Алкены используются для органического синтеза, производства пластмасс, искусственного моторного топлива, диеновые углеводороды – исходное сырье в промышленном синтезе каучуков.

  1. Алкины

Алкины – углеводороды с тройной связью C?C в молекулах (непредельные углеводороды ряда ацетилена). Простейший представитель этого ряда – ацетилен С2Н2, общая формула алкинов CnH2n-2 (при n ? 2).

Названия простейших алкинов:

С2Н2 – этин (традиционно: ацетилен)

С3Н4 – пропин (метилацетилен)

С4Н6 – бутин

Изомеры бутина:




Ацетилен, пропин и бутин-1 – бесцветные газы при комнатной температуре, бутин-2 – легкокипящая жидкость, обладает легким «эфирным» запахом.

В алкинах атомные орбитали углерода у тройной связи имеют sp-гибридизацию (линейное строение). Наличие двух ?-связей обусловливает их химические свойства, в частности высокую способность к реакциям ступенчатого присоединения водорода, хлора, брома, галогеноводородов, воды:

а)



б)

в)

(присоединение НCl к хлорэтену происходит по правилу Марковникова; хлорэтен традиционно называют хлорвинилом или винилхлоридом);

г) реакция Кучерова (гидратация на катализаторе)




При циклизации ацетилена образуется бензол:




Упомянутый выше хлорвинил способен полимеризоваться:




Поливинилхлорид (ПВХ) – полимер, основа пластмассы, волокон и пленок, применяется в производстве труб, искусственной кожи, электроизоляции, пеноматериалов.

Качественные реакции:

1) на алкины любого строения – обесцвечивание раствора КMnO4, чаще всего происходит разрыв углеродной цепи по месту тройной связи (ср. с алкенами);

2) на алкины с концевой тройной связью – замещение концевого атома водорода на медь (I) с образованием ярко-красного осадка:




Получение: в промышленности ацетилен ранее получали гидролизом дикарбида (ацетиленида) кальция:




(неприятный «карбидный» запах газа обусловлен примесями, главным образом фосфином РН3).

Современный способ — пиролиз (термическое разложение) метана:




В лаборатории для получения ацетилена и его гомологов используют взаимодействие дигалогенопроизводных алканов со щелочами в спиртовом растворе при нагревании:




(обязательное условие – атомы галогенов должны находиться при соседних атомах углерода). Эта реакция может проходить в одну стадию (как показано выше), но чаще – в две стадии:

а)



б)



Алкины, особенно ацетилен, используются как исходное сырье в химической промышленности для многих органических синтезов. Кроме того, ацетилен благодаря высокой теплотворной способности сгорания:




применяется для автогенной сварки и резки металлов.

  1. Арены

Арены – это непредельные углеводороды, которые можно рассматривать как производные простейшего из них — бензола С6Н6. Общая формула углеводородов гомологического ряда бензола СnН2n-6 (при n = 6).


Формула Кекуле часто применяется в тех случаях, когда необходимо более наглядно представить протекание реакции с участием бензольного кольца С6; его изображение:




В обеих формулах атомы С кольца и не участвующие в реакции атомы Н опускаются (для краткости). Некоторые простейшие гомологи бензола:




Радикал бензола С6Н5 называется фенил, радикал толуола С6Н5СН2 — бензил.

Бензол и его ближайшие гомологи – жидкости без цвета, но с характерным запахом, имеют широкий интервал жидкого состояния. Практически не растворяются в воде, но хорошо смешиваются между собой и с другими органическими растворителями. Пар бензола сильно ядовит.

Несмотря на формальную непредельность, бензол отличается высокой устойчивостью к нагреванию и окислению (в гомологах бензола окисляется только боковая цепь). Характерными для бензола являются реакции замещения:

а) нитрование в присутствии концентрированной серной кислоты на холоду:




б) галогенирование в присутствии галогенидов железа (III):




в) алкилирование в присутствии хлорида алюминия:




Особый характер ненасыщенности бензола и его гомологов иллюстрируется этими химическими свойствами и называется «ароматическим» характером.

В производных бензола атом или группа, заместившие водород кольца, и само бензольное кольцо влияют друг на друга. По характеру влияния различают:

1) заместители I рода – CI, Br, I, СН3, СnН2n+1, ОН и NH2. Они облегчают реакции дальнейшего замещения и направляют второй заместитель по отношению к себе в орто- (о-, или 2-) положение и в пара- (п-, или 4-) положение [для запоминания: орто – около, пара – против], например:




2) заместители II рода – NO2, С(Н)O, СООН и CN. Они затрудняют реакции дальнейшего замещения и направляют второй заместитель в мета- (м-, или 3-) положение, например:




Очевидно, что существуют два орто-положения рядом с первым заместителем X, два мета-положения, отделенные от первого заместителя одним углеродом кольца, и лишь одно пара-положение через два атома углерода бензольного кольца:




Ранее уже отмечалось, что бензол стоек к окислению даже при действии сильных окислителей. Гомологи бензола с одним боковым радикалом вступают в реакции окисления только за счет радикала; при этом, какова бы ни была его длина, отщепляется вся цепь, кроме ближайшего к кольцу атома углерода (он создает карбоксильную группу):




В жестких условиях бензол вступает в реакции присоединения:




Стирол C6H5—CH=CH2, как этилен, легко полимеризуется:




Полистирол – термопластичная пластмасса (термопласт), прозрачный материал, размягчающийся при температуре выше 80 °C. Используется для изготовления изоляции электропроводов, посуды разового употребления, упаковочной массы (пенопласт).

Получение аренов – ароматизация алифатических и алициклических углеводородов, содержащихся в нефтяных или буроугольных бензиновых фракциях:

1) дегидрирование:




2) дегидроциклизация:




3) тримеризация ацетилена (устаревший способ):




Бензол и его гомологи используются в качестве малополярных растворителей (для каучука, лаковых смол, полимеров), сырье в органическом синтезе.

4