СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Математика. Площадь боковой и полной поверхности призмы.

Категория: Геометрия

Нажмите, чтобы узнать подробности

Площадью боковой поверхности призмы называется сумма площадей ее боковых граней.

Призма является многогранником.

Боковыми ребрами называются отрезки, соединяющие соответствующие вершины оснований.

Высотой призмы называется расстояние между плоскостями ее оснований.

Призма называется прямой, если ее боковое ребро перпендикулярно плоскости основания. 

Призма называется наклонной, если боковое ребро призмы не перпендикулярно плоскости основания.

Правильная призма — прямая призма, основания которой являютя правильными многоугольниками.

Площадь полной поверхности призмы — сумма площадей всех её граней. Площадь полной поверхности (Sполн) выражается через площадь боковой поверхности (Sбок) и площадь основания призмы формулой: Sполн=Sбок+2Sосн .

Площадь боковой поверхности призмы (Sбок) — сумма площадей её боковых граней.

Имеют место формулы : Sбок = Pl; V = Sосн · H , где Sбок — площадь боковой поверхности призмы, P — периметр перпендикулярного сечения, l — длина бокового ребра, V — объем, Sосн — площадь основания, H — высота призмы.

Теорема о площади боковой поверхности прямой призмы. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Сечение, образованное плоскостью, перпендикулярной к боковому ребру призмы, называется нормальным (ортогональным) сечением призмы.

Призма называется параллелепипедом, если её основания — параллелограммы.