Проблемы и перспективы развития школьного математического образования
Проблемы:
- Расслоение выпускников: около 50 % учащихся 10-11 классов фактически не готовы к тому уровню математики, которым должны владеть и находятся на уровне 7-9 класса;
- Развивающее математическое
образование заменяет техническое: дети решают логарифмы, но не могут решить простые жизненные задачи, требующие навыков логического осмысления условия.
изучению предмета из-за позиции родителей и детей, что математика 10-11 класса немногим пригодиться в жизни, поэтому выполнение заданий (в том числе домашних) воспринимается как рутина.
Перспективы
- Наблюдается рост интереса к развитию математического мышления;
- Укрепляется понимание необходимости овладения минимальными математическими навыками для получения профессионального образования.
Шаги повышения уровня математического образования:
1. Дифференцированное обучение.
2. Объективное оценивание (выставление оценки как
факта, означающего конкретные личностные
успехи, а не критерия, заданного нормой).
3.Совершенствование механизмов промежуточного
мониторинга (не только в 4, 9 и 11 классе);
4. Работа с отстающими (без своевременной
ликвидации пробелов знаний невозможно
достижение ситуации успеха);
5. Наличие разноуровневых электронных курсов как
для педагогов, так и для учащихся.
РАБОТА С ОТСТАЮЩИМИ
Одной из актуальных проблем в школе остается проблема повышения эффективности учебно-воспитательного процесса и преодоление школьной неуспеваемости. Ее решение предполагает совершенствование методов и форм организации обучения, поиск новых, более эффективных путей формирования знаний у учащихся, которые учитывали бы их реальные возможности.
Особенностью познавательной деятельности слабоуспевающих по математике учащихся является несформированность общих умственных действий анализа, обобщения. Это выражается в неумении выделять основное в учебном материале, устанавливать существенные связи между понятиями и их свойствами, а также в медленном темпе продвижения, в быстром распаде усвоенных знаний, в трудности усвоения новых знаний и видов деятельности, что влечет за собой умственную пассивность, неверие в свои силы, потребность в посторонней опеке.
Поэтому, главное в обучении неуспевающих по математике учащихся – кропотливая, систематическая работа по формированию у них приемов общих и специфических умственных действий.
Для организации процесса обучения с такими детьми, необходимо уделять больше времени практической и исследовательской работе, позволяющей отрабатывать долговременную память на уровне не только механического запоминания, но и построения цепочки событий, имеющих аналогию с окружающим миром.
Решение жизненной задачи
Ситуация : Выбор банка для оптимального вклада
Ваша роль : Казначей фонда спортивной секции
Описание : Для спортивной секции строится новое здание, которое будет готово через год. Имеющиеся в фонде секции деньги нужно вложить на этот год в банк.
В городе есть три банка: Бета-банк, Гамма-банк, Дельта-банк. Бета-банк выплачивает 6 % от вклада каждые полгода, Гамма-банк – 4 % каждые четыре месяца, Дельта-банк – 3 % каждые три месяца.
Задание: Выберите банк, в который выгоднее вложить деньги сроком на 12 месяцев.
Решение:
1 шаг – сообщение ученика о казначеях (истоки профессии, должностные обязанности казначеев разных времен и др.)
2 шаг – обсуждение условия, достаточно ли данных в задаче для ее решения? (нет конкретной суммы вклада )
3 шаг – решение:
Бета-банк: (100+6)/100=1,06 2 = 1,1236
Гамма-банк: (100+4)/100=1,04 3 = 1,124864
Дельта-банк: (100+3)/100=1,03 4 = 1,12550881
Можно найти разницу : (1,12550881/1,124864) ∙100% = 0,06 %
(1,12550881/1,1236) ∙100% = 0,17 %
Можно взять за вклад конкретную сумму и выполнить вычисления с помощью пропорции и т.д.
Вывод: задача, которая для слабого ученика изначально кажется не решаемой, оказавшись в результате полезной и интересной, привлекает внимание, мотивирует к дальнейшему изучению темы. Разностороннее обыгрывание ситуации дает возможность включения в работу на разных ее этапах.