СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Урок "Обмен веществ"

Категория: Биология

Нажмите, чтобы узнать подробности

Презентация для урока по теме "Обмен веществ"

Просмотр содержимого документа
«Урок "Обмен веществ"»

Урок биологии в 10 классе. 900igr.net

Урок биологии в 10 классе.

900igr.net

Основные понятия Метаболизм; Пластический обмен; Энергетический обмен; Гомеостаз; Фермент.

Основные понятия

  • Метаболизм;
  • Пластический обмен;
  • Энергетический обмен;
  • Гомеостаз;
  • Фермент.
Метаболизм   (обмен веществ и энергии) Внешний обмен Внутренний обмен (поглощение и выделение веществ клеткой) (химические превращения веществ в клетке) Пластический обмен (ассимиляция или анаболизм) Энергетический обмен (диссимиляция или катаболизм)

Метаболизм

(обмен веществ и энергии)

Внешний обмен

Внутренний обмен

(поглощение и выделение веществ клеткой)

(химические превращения веществ в клетке)

Пластический обмен (ассимиляция или анаболизм)

Энергетический обмен (диссимиляция или катаболизм)

Сравнительная таблица признаки пластический обмен 1.Значение в клетке энергетический обмен Для построения клетки 2.Энергия Запасается Выработка энергии 3.Органические вещества Освобождается Синтезируются 4. АТФ Расходуется Распадаются  Образуется

Сравнительная таблица

признаки

пластический обмен

1.Значение в клетке

энергетический обмен

Для построения клетки

2.Энергия

Запасается

Выработка энергии

3.Органические вещества

Освобождается

Синтезируются

4. АТФ

Расходуется

Распадаются

Образуется

Обмен веществ (метаболизм) = ассимиляции + диссимиляции

Органические вещества пищи являются основным источником не только материи , но и энергии для жизнедеятельности клеток организма. При образовании сложных органических молекул была затрачена энергия, потенциально она находится в форме образованных химических связей. В результате реакций энергетического обмена происходит окисление сложных молекул до более простых и разрушение химических связей, при этом происходит высвобождение энергии.

АТФ + Н 2 О = АДФ + Н 3 РО 4 + 40 кДж (гидролиз)

Содержание АТФ в клетках в среднем составляет от 0,05% до 0,5% от массы. Все биохимические реакции требуют затрат энергии молекул АТФ, поэтому запас АТФ должен постоянно пополняться:

АДФ + Н 3 РО 4 + 40 кДж = АТФ + Н 2 О

I. С3Н4О3  СО2 + СН3СОН (уксусный альдегид)

II. СН3СОН + НАД·Н2  С2Н5ОН + НАД+

У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:

С3Н4О3 + НАД·Н2  С3Н6О3 + НАД+

Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С6Н12О6 + 6Н2О  6СО2 + 4АТФ + 12Н2

2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.

Рис.299. Цикл Кребса.

Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).

Рис. 300. Дыхательная цепь и АТФ-синтетаза.

Суммарная реакция энергетического обмена выглядит так:

С6Н12О6 + 6О2  6СО2 + 6Н2О + 38АТФ + Qт

Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.

Тема: Энергетический обмен  в клетке.

Тема: Энергетический обмен в клетке.

Подготовительный этап.

Под действием ферментов пищеварительного тракта или ферментов лизосом

Сложные органические молекулы расщепляются:

белки — до аминокислот

жиры — до глицерина и жирных кислот

углеводы — до глюкозы

нуклеиновые кислоты — нуклеотидов

Вся энергия при этом рассеивается в виде тепла.

Процесс энергетического обмена можно разделить на три этапа: на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров, на втором происходит бескислородное окисление этих мономеров — гликолиз, и на последнем этапе происходит окисление с участием кислорода в митохондриях.

Подготовительный этап. Под действием ферментов пищеварительного тракта или ферментов лизосом белковые молекулы расщепляются до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Вся энергия при этом рассеивается в виде тепла.

Гликолиз, или бескислородное окисление. Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования, акцептором Н служит кофермент НАД+. Реакции протекают в цитоплазме , глюкоза с помощью 10 ферментативных реакций превращается в 2 молекулы ПВК — пировиноградной кислоты и образуется восстановленная форма переносчика водорода НАД·Н2 никотинамидаденин-динуклеотида. При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:

С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+ 

2 С3Н4О3 + 2АТФ + 2Н2О + 2НАД·Н2

Дальнейшая судьба ПВК зависит от присутствия О2 в клетке, если О2 нет, происходит анаэробное дыхание , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

I. С3Н4О3  СО2 + СН3СОН (уксусный альдегид)

II. СН3СОН + НАД·Н2  С2Н5ОН + НАД+

У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:

С3Н4О3 + НАД·Н2  С3Н6О3 + НАД+

Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С6Н12О6 + 6Н2О  6СО2 + 4АТФ + 12Н2

2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.

Рис.299. Цикл Кребса.

Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).

Рис. 300. Дыхательная цепь и АТФ-синтетаза.

Суммарная реакция энергетического обмена выглядит так:

С6Н12О6 + 6О2  6СО2 + 6Н2О + 38АТФ + Qт

Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.

Внутриклеточное расщепление

Процесс энергетического обмена можно разделить на три этапа: на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров, на втором происходит бескислородное окисление этих мономеров — гликолиз, и на последнем этапе происходит окисление с участием кислорода в митохондриях.

Подготовительный этап. Под действием ферментов пищеварительного тракта или ферментов лизосом белковые молекулы расщепляются до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Вся энергия при этом рассеивается в виде тепла.

Гликолиз, или бескислородное окисление. Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования, акцептором Н служит кофермент НАД+. Реакции протекают в цитоплазме , глюкоза с помощью 10 ферментативных реакций превращается в 2 молекулы ПВК — пировиноградной кислоты и образуется восстановленная форма переносчика водорода НАД·Н2 никотинамидаденин-динуклеотида. При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:

С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+ 

2 С3Н4О3 + 2АТФ + 2Н2О + 2НАД·Н2

Дальнейшая судьба ПВК зависит от присутствия О2 в клетке, если О2 нет, происходит анаэробное дыхание , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

I. С3Н4О3  СО2 + СН3СОН (уксусный альдегид)

II. СН3СОН + НАД·Н2  С2Н5ОН + НАД+

У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:

С3Н4О3 + НАД·Н2  С3Н6О3 + НАД+

Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С6Н12О6 + 6Н2О  6СО2 + 4АТФ + 12Н2

2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.

Рис.299. Цикл Кребса.

Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).

Рис. 300. Дыхательная цепь и АТФ-синтетаза.

Суммарная реакция энергетического обмена выглядит так:

С6Н12О6 + 6О2  6СО2 + 6Н2О + 38АТФ + Qт

Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.

Анаэробный этап (бескислородный)

Гликолиз – ферментативное расщепление глюкозы.

Окисление глюкозы в клетках происходит без кислорода с участием ферментов. Реакции протекают в цитоплазме, глюкоза с помощью 9 ферментативных реакций распадается на 2 молекулы ПВК — пировиноградной кислоты С 3 Н 4 О 3 , которая во многих клетках превращается в молочную кислоту С 3 Н 6 О 3 и при этом суммарно образуются 2 молекулы АТФ .

При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 2 С 3 Н 6 О 3 + 2АТФ + 2Н 2 О

Процесс энергетического обмена можно разделить на три этапа: на первом этапе происходит пищеварение, то есть сложные органические молекулы расщепляются до мономеров, на втором происходит бескислородное окисление этих мономеров — гликолиз, и на последнем этапе происходит окисление с участием кислорода в митохондриях.

Подготовительный этап. Под действием ферментов пищеварительного тракта или ферментов лизосом белковые молекулы расщепляются до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Вся энергия при этом рассеивается в виде тепла.

Гликолиз, или бескислородное окисление. Окисление глюкозы в клетках без участия кислорода происходит путем дегидрирования, акцептором Н служит кофермент НАД+. Реакции протекают в цитоплазме , глюкоза с помощью 10 ферментативных реакций превращается в 2 молекулы ПВК — пировиноградной кислоты и образуется восстановленная форма переносчика водорода НАД·Н2 никотинамидаденин-динуклеотида. При этом образуется 200 кДж энергии, 120 рассеивается в форме тепла, 80 кДж запасается в форме 2 моль АТФ:

С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+ 

2 С3Н4О3 + 2АТФ + 2Н2О + 2НАД·Н2

Дальнейшая судьба ПВК зависит от присутствия О2 в клетке, если О2 нет, происходит анаэробное дыхание , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

I. С3Н4О3  СО2 + СН3СОН (уксусный альдегид)

II. СН3СОН + НАД·Н2  С2Н5ОН + НАД+

У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:

С3Н4О3 + НАД·Н2  С3Н6О3 + НАД+

Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С6Н12О6 + 6Н2О  6СО2 + 4АТФ + 12Н2

2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.

Рис.299. Цикл Кребса.

Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).

Рис. 300. Дыхательная цепь и АТФ-синтетаза.

Суммарная реакция энергетического обмена выглядит так:

С6Н12О6 + 6О2  6СО2 + 6Н2О + 38АТФ + Qт

Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.

Спиртовое брожение

Дальнейшая судьба ПВК зависит от присутствия О 2 в клетке.

Если О 2 нет, происходит анаэробное брожение , причем у дрожжей и растений происходит спиртовое брожение , при котором сначала происходит образование уксусного альдегида, а затем этилового спирта.

У животных и некоторых бактерий при недостатке О2 происходит молочнокислое брожение с образованием молочной кислоты:

С3Н4О3 + НАД·Н2  С3Н6О3 + НАД+

Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Пировиноградная кислота проникает в митохондрии, происходит ее дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса (рис. 299). Здесь происходит дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную моль ПВК из митохондрии удаляется 3 моль СО2, образуется 5 пар атомов водорода, связанных с переносчиками (4 НАДН2, ФАДН2), а также моль АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С6Н12О6 + 6Н2О  6СО2 + 4АТФ + 12Н2

2АТФ образуются при гликолизе, две — в цикле Кребса; 2 пары атомов (2НАД·Н2)образовались при гликолизе, 10 пар — в цикле Кребса.

Рис.299. Цикл Кребса.

Последним этапом является окисление пар атомов водорода с участием О2 до Н2О с одновременным фосфорилированием АДФ до АТФ. Этот процесс происходит на внутренней мембране митохондрий. Водород передается по трем большим ферментным комплексам дыхательной цепи (флавопротеин, кофермент Q , цитохромы), расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, а протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода. Электроны передаются по ферментам дыхательной цепи на цитохромоксидазу . Когда разность потенциалов на внешней и внутренней стороне внутренней мембраны достигает 200 мВ, протоны (12Н2) проходят через канал фермента АТФ-синтетазы и с помощью цитохромоксидазы происходит восстановление кислорода до воды (12Н2О) с выделением энергии, часть которой (55%) запасается в форме 34АТФ (рис. 300).

Рис. 300. Дыхательная цепь и АТФ-синтетаза.

Суммарная реакция энергетического обмена выглядит так:

С6Н12О6 + 6О2  6СО2 + 6Н2О + 38АТФ + Qт

Если внутренняя мембрана повреждена, то окисление НАДН2 продолжается, но не работает АТФ-синтетаза и образования АТФ не происходит, вся энергия выделяется в форме тепла.

С 6 Н 12 О 6 +2АДФ+2Н 3 РО 4 =2С 2 Н 5 ОН+2СО 2 + 2АТФ +2Н 2 О

Неполное расщепление

В результате гликолиза 40% выделившейся энергии запасается в виде АТФ, 60% - рассеивается в виде тепла.

**Тест 1. На подготовительном этапе энергетического обмена происходит:

Гидролиз белков до аминокислот.

Гидролиз жиров до глицерина и карбоновых кислот.

Гидролиз углеводов до моносахаридов.

Гидролиз нуклеиновых кислот до нуклеотидов.

Тест 2. Обеспечивают гликолиз:

Ферменты пищеварительного тракта и лизосом.

Ферменты цитоплазмы.

Ферменты цикла Кребса.

Ферменты дыхательной цепи.

Тест 3. В результате бескислородного окисления в клетках у животных при недостатке О2 образуется:

ПВК.

Молочная кислота.

Этиловый спирт.

Ацетил-КоА.

Тест 4. В результате бескислородного окисления в клетках у растений при недостатке О2 образуется:

ПВК.

Молочная кислота.

Этиловый спирт.

Ацетил-КоА.

Тест 5. При гликолизе моль глюкозы образуется всего энергии:

200 кДж.

400 кДж.

600 кДж.

800 кДж.

Тест 6. Три моль глюкозы подверглось гликолизу в животных клетках при недостатке кислорода. При этом углекислого газа выделилось:

3 моль.

6 моль.

12 моль.

Углекислый газ в животных клетках при гликолизе не выделяется.

***Тест 7. К биологическому окислению относятся:

Окисление вещества А в реакции: А + О2  АО2.

Дегидрирование вещества А в реакции: АН2 + В  А + ВН2.

Потеря электронов ( Fe 2+ в реакции Fe 2+  Fe 3+ + е- ).

Приобретение электронов ( Fe 3+ в реакции Fe 2+  Fe 3+ + е- ).

**Тест 8. Реакции подготовительного этапа происходят:

В пищеварительном тракте.

В митохондриях.

В цитоплазме.

В лизосомах.

Тест 9. Энергия, которая выделяется в реакциях подготовительного этапа:

Рассеивается в форме тепла.

Запасается в форме АТФ.

Большая часть рассеивается в форме тепла, меньшая — запасется в форме АТФ.

Меньшая часть рассеивается в форме тепла, большая — запасется в форме АТФ.

Тест 10. Энергия, которая выделяется в реакциях гликолиза:

Рассеивается в форме тепла.

Запасается в форме АТФ.

120 кДж рассеивается в форме тепла, 80 кДж — запасется в форме АТФ.

80 кДж рассеивается в форме тепла, 120 кДж — запасется в форме АТФ.

Аэробный этап (кислородный) Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях. Вспомним, как устроены митохондрии? Каковы функции митохондрий? Каково происхождение митохондрий?

Аэробный этап (кислородный)

Третий этап энергетического обмена — кислородное окисление , или дыхание , происходит в митохондриях.

Вспомним, как устроены митохондрии?

Каковы функции митохондрий?

Каково происхождение митохондрий?

Полное окисление  Органические вещества, образовавшиеся на II этапе (например, С 3 Н 6 О 3 ), поступают на ферментативный «конвейер» и расщепляются с участием кислорода до конечных продуктов: 2С 3 Н 6 О 3 + 6О 2 + 36АДФ + 36Н 3 РО 4 = 6СО 2 + 42Н 2 О + 36АТФ  В результате полного окисления органических веществ 60% энергии запасается в виде молекул АТФ, 40% - рассеивается в виде тепла.

Полное окисление

Органические вещества, образовавшиеся на II этапе (например, С 3 Н 6 О 3 ), поступают на ферментативный «конвейер» и расщепляются с участием кислорода до конечных продуктов:

3 Н 6 О 3 + 6О 2 + 36АДФ + 36Н 3 РО 4 = 6СО 2 + 42Н 2 О + 36АТФ

В результате полного окисления органических веществ 60% энергии запасается в виде молекул АТФ, 40% - рассеивается в виде тепла.

Биологическое окисление и горение  Процесс окисления глюкозы в клетке сходен с процессом горения. Как и при горении, так и при дыхании глюкоза окисляется при участии молекулярного кислорода до конечных продуктов – углекислого газа и воды с выделением энергии. Объясните, чем же отличаются эти процессы, если их можно выразить общим уравнением:   С 6 Н 12 О 6 + 6О 2 = 6СО 2 + 6Н 2 О + Q ?

Биологическое окисление и горение

Процесс окисления глюкозы в клетке сходен с процессом горения. Как и при горении, так и при дыхании глюкоза окисляется при участии молекулярного кислорода до конечных продуктов – углекислого газа и воды с выделением энергии. Объясните, чем же отличаются эти процессы, если их можно выразить общим уравнением:

С 6 Н 12 О 6 + 6О 2 = 6СО 2 + 6Н 2 О + Q ?