СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Математика 5 класс. Урок 79.

Категория: Математика

Нажмите, чтобы узнать подробности

Математика 5 класс. Урок 79.

Просмотр содержимого документа
«Математика 5 класс. Урок 79.»

Математика 5 класс Урок 79

Тема

Площадь. Площадь прямоугольника

Тип урока

Урок изучения нового материала.

Формируемые результаты

Предметные: сформировать у учащихся представление о площади фигуры, установить связи между единицами измерения площади, познакомить учащихся с формулами площади прямоугольника и площади квадрата.

Личностные: формировать умение определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией.

Метапредметные: формировать умение видеть математическую задачу в контексте проблемной ситуации, в окружающей жизни.

Планируемые результаты

Учащийся получит представление о площади фигуры и её свойствах, научится устанавливать связи между единицами измерения площади, применять формулы площади прямоугольника и площади квадрата.

Основные понятия

Площадь, свойства площади, единица измерения, измерение площади, формула площади прямоугольника, формула площади квадрата.



Организационная структура урока

Этапы проведения урока

Форма организации УД

Задания для учащихся, выполнение которых приведет к достижению планируемых результатов

Учебник

Рабочая тетрадь

Дидактические материалы

  1. Организационный этап


  1. Постановка формируемых результатов и задач урока. Мотивация учебной деятельности учащихся.

В обычной жизни на каждом шагу мы встречаемся с понятием “площадь”. Что такое “площадь”, знает каждый. Каждый понимает смысл слов: площадь комнаты, площадь садового участка. Подумайте и самостоятельно ответьте на вопрос? что такое “площадь”? И вы увидите, что не так-то это просто. Даже математики смогли создать соответствующую математическую теорию сравнительно недавно. Правда, это никому не мешало успешно использовать понятие площади и в науке, и на практике с незапамятных времен.

Измерение площадей считают одним из самых древних разделов геометрии; в частности название “геометрия” (т.е. “землемерие”) связывают именно с измерением площадей. Согласно легенде, эта наука возникла в Древнем Египте, где после каждого разлива Нила приходилось заново производить разметку участков, покрытых плодоносным илом, и вычисление их площадей.

У римлян мерой земляных участков был югер (от «югум» — «ярмо»). Это участок земли, вспахиваемый за день двумя волами, впряженными в деревянное ярмо.

В древней Руси слабо знали основы геометрии и испытывали трудности их приложения к измерению земельных участков неправильной формы. С течением времени для пахотных земель главенствующую роль стала играть четверть — площадь, на которую высевали четверть (меру объема) ржи.

И сегодня мы с вами определим четкое понятие «площади фигуры».


  1. Проверка домашнего задания


4.Актуализация знаний

Ф

Устно: № 1




5.Изучение нового материала

Ф

Теоретический материал § 21


Площади каких фигур вы уже умеете вычислять?


– Что показывает площадь? (Сколько места занимает фигура на плоскости)

- у вас на партах разные фигуры, сравните их, выберите самую большую, самую маленькую.

Как измерить площадь фигуры? Сначала нужно выбрать единицу площади, т.е. указать единичный квадрат, т.е. квадрат, сторона которого служит единицей длины.

При выбранной единице измерения площадей площадь каждого многоугольника показывает сколько раз единица измерения и ее части укладываются в данном многоугольнике.

- у вас на партах в конвертах различные единицы измерения площади- квадраты, со стороной 1 см, 1 дм. Какую единицу вы выберите, чтобы найти площадь вашего прямоугольника? Работая в парах, найдите площадь фигуры 1. (Ученики укладывают квадраты, со стороной 1 см. в фигуре, сообщают учителю количество) Мы нашли площадь нашей фигуры.

Запишем S = … см2

А чтобы найти площадь моей фигуры, квадрат с какой стороной нужно выбрать? (Учитель показывает большую фигуру)

К доске выходят несколько учеников, выбирают квадраты, укладывают на фигуре, сообщают площадь.

Чтобы найти площадь класса, квадрат с какой стороной нужно выбрать? Удобно ли пользоваться теми, что есть у нас?

Найдите площадь каждой фигуры, изображенной на рисунке 68, если условиться, что длина стороны каждой клетки равна 1 см.

Итак, чтобы найти площадь фигуры, нужно:

1. Выбрать единицу измерения, посчитать, сколько раз эта единица укладывается в данной фигуре.

Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников. Это свойство площади многоугольника.

Равные многоугольники имеют равные площади.

Найдите площадь прямоугольника, который есть у вас.

Удобно ли каждый раз укладывать единичные квадраты в наших фигурах?

Предложите способ, который позволяет вычислить площадь прямоугольника, не используя способ подсчета уместившихся квадратов.

S = a * b

А как называется прямоугольник, у которого длина и ширина равны? (Квадрат)

Он давно знакомый мой.

Каждый угол в нем прямой,

Все четыре стороны одинаковой длины.

Вам его представить рад,

А зовут его …(квадрат).

Как найти его площадь?

S = a∙a = a2

А периметр?

Р = а + а + а + а = 4а





6.Первичное закрепление нового материала

Ф


И

№ 564, 565, 566, 567, 569, 571, 572



№ 244, 245, 246


7.Повторение

И

№ 595



8.Итоги урока

П

Вопросы 1-7



9.Информация о домашнем задании


§ 21, вопросы 1-7, № 568, 570, 573, 596 (1)





Методические комментарии



Примеры, приведённые в начале параграфа, способствуют неформальному пониманию свойств площади фигуры. При необходимости список подобных примеров можно расширить.



Следует обратить внимание учащихся на то, что здесь получает дальнейшее развитие единый подход к измерению величин: сравнение величины

  1. единицей измерения. Это будет способом подойти к тому, что учащиеся осознают необходимость введения единиц измерения площади.

    1. параграфе фактически доказывается формула площади прямоугольника S = ab, где a и b — натуральные числа. Учащиеся должны понимать, почему в этой формуле величины a и b выражены в одних и тех же единицах.



Желательно на примерах показать соотношение между равными и равновеликими фигурами.



Желательно, чтобы учащиеся самостоятельно смогли привести примеры равновеликих, но не равных фигур.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!