Целые выражения - это выражения, составленные из чисел и переменных с использованием действий сложения, вычитания, умножения и деления на число, отличное от нуля.
Дробные выражения допускают также деление на выражение с переменными.
Целые и дробные выражения называют рациональными выражениями.
Допустимые значения переменных - это те значения переменных, при которых выражение имеет смысл.
Рациональная дробь - это дробь, числителем и знаменателем которой являются многочлены.
Основное свойство дроби: если числитель и знаменатель некоторой рациональной дроби умножить на один и тот же многочлен, не равный тождественно нулю, то получится дробь, равная исходной.
Тождество - это равенство, которое верно при всех допустимых значениях переменных, входящих в это равенство.
Сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Возможность такого сокращения обусловлена основным свойством дроби.
Сократить дроби:
Общим знаменателем нескольких рациональных дробей называется целое рациональное выражение, которое делится на знаменатель каждой дроби.
Чтобы несколько рациональных дробей привести к общему знаменателю, нужно:
- разложить знаменатель каждой дроби на множители;
- составить общий знаменатель, включив в него в качестве сомножителей все множители полученных разложений; если множитель имеется в нескольких разложениях, то он берется с наибольшим показателем степени;
- найти дополнительные множители для каждой из дробей (для этого общий знаменатель делят на знаменатель дроби);
- домножив числитель и знаменатель на дополнительный множитель, привести дроби к общему знаменателю.
Например,
Умножение и деление рациональной дроби
Произведение двух (любого конечного числа) рациональных дробей тождественно равно дроби, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей перемножаемых дробей:

Частное от деления двух рациональных дробей тождественно равно дроби, числитель которой равен произведению числителя первой дроби на знаменатель второй дроби, а знаменатель - произведению знаменателя первой дроби на числитель второй дроби:
Пример:
Выполнить умножение .
Чтобы возвести рациональную дробь в натуральную степень n, нужно возвести в эту степень отдельно числитель и знаменатель дроби; первое выражение - числитель, а второе выражение - знаменатель результата:
При возведении дроби в целую отрицательную степень используется тождество:
Преобразование любого рационального выражения сводится к сложению, вычитанию, умножению и делению рациональных дробей, а также к возведению дроби в натуральную степень.
Всякое рациональное выражение можно преобразовать в дробь, числитель и знаменатель которой целые рациональные выражения; в этом, как правило, состоит цель тождественных преобразований рациональных выражений.
Пример:
Упростить выражение:
Решение:
