Второй признак равенства треугольников
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

MN=PR∡N=∡R∡M=∡P
Как и в доказательстве первого признака, нужно убедиться, достаточно ли этого для равенства треугольников, можно ли их полностью совместить?
1. Так какMN=PR, то эти отрезки совмещаются, если совместить их конечные точки.
2. Так как∡N=∡R и∡M=∡P, то лучи MK и NK наложатся соответственно на лучи PT и RT.
3. Если совпадают лучи, то совпадают точки их пересечения K и T.
4. Совмещены все вершины треугольников, то есть ΔMNK и ΔPRT полностью совместятся, значит они равны.