Для того чтобы школьникам научиться решать задачи, надо помочь им разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.
Презентацию можно использовать на уках математики, верочтности и статистике, при подготовке к ВПР, ОГЭ и ЕГЭ
Просмотр содержимого документа
«Метод графов - один из способов решения логических задач»
Теория графов в решении логических и вероятностных задач
Метод ГРАФОВ - один из способов решения логических задач.
Учитель математики МБОУ ТСОШ №3 Митрофанова Н.В.
Родоначальник теории графов
Можно ли обойти Кенигсбергские мосты, проходя только один раз через каждый из этих мостов?
Леонард Эйлер (1707-1783)
Эйлер вычислял без всякого видимого усилия,
как человек дышит или как орёл парит над землёй.
Доминик Араго
Графом в математике называется конечная совокупность точек , именуемых вершинами ; некоторые из них соединены друг с другом линиями , называемых ребрами графа.
Задача №1
- Между девятью планетами солнечной системы установлено космическое сообщение. Рейсовые ракеты летают по следующим маршрутам:
Земля – Меркурий;
Плутон – Венера;
Нептун – Сатурн;
Сатурн – Юпитер;
Земля – Плутон;
Плутон – Меркурий; Меркурий – Венера;
Юпитер – Марс;
Марс – Уран.
Уран – Нептун;
- Можно ли долететь на рейсовых ракетах с Земли до Марса?
Одинаковые, но по-разному нарисованные графы, называются изоморфными
Задача №2
- В одном городе шесть станций метро: Алмазная, Золотая, Лесная, Парковая, Садовая, Серебряная. Поезда следуют по маршрутам:
- Алмазная – Золотая,
- Золотая – Серебряная,
- Серебряная – Алмазная.
- Лесная – Садовая,
- Садовая – Парковая,
- Парковая – Лесная.
Можно ли с помощью этих поездов добраться со станции Парковая до станции Алмазная?
Графическое представление решения
- Граф представляет собой непустое множество точек и множество отрезков, оба конца которых принадлежат заданному множеству точек .
- Обозначать граф можно буквой «Г». Ребра могут быть прямолинейными и криволинейными; длины ребер и расположение точек произвольны.
- один и тот же граф.
ГРАФ
Граф
Нуль-граф
Изоморфный
Полный
Ориентированный
Плоский
Связный
Взвешенный
Однородный
Неориентированный
Дерево
Виды графов
Ориентированный граф (кратко орграф) — рёбрам которого присвоено направление.
Неориентированный граф - это граф, в котором нет направления линий.
Связный граф – граф, в котором существует путь.
Несвязный граф
Связный граф
Несвязный граф - нет ни одного пути.
Взвешенный граф – дуги или ребра имеют вес.
Несколько интересных задач 1. «Маршруты»
Несколько интересных задач 1. «Маршруты»
- Задача 1. Как вы помните, охотник за мертвыми душами Чичиков побывал у известных помещиков по одному разу у каждого. Он посещал их в следующем порядке: Манилова, Коробочку, Ноздрева, Собакевича, Плюшкина, Тентетникова, генерала Бетрищева, Петуха, Констанжолго, полковника Кошкарева . Найдена схема, на которой Чичиков набросал взаимное расположение имений и проселочных дорог, соединяющих их. Установите, какое имение кому принадлежит, если ни одной из дорог Чичиков не проезжал более одного раза.
1. «Маршруты»
- Задача 2. Передвигаться можно только в направлении стрелок. В каждом пункте можно бывать не более одного раза. Сколькими способами можно попасть из пункта 1 в пункт 9? Какой маршрут самый короткий и какой — самый длинный.
Кратчайший путь-1-5-9;
самый длинный - 1-2-3-6-5-7-8-9 .
2. «Группы, знакомства»
- Однажды Андрей, Борис, Володя, Даша и Галя договорились вечером пойти в кино. Выбор кинотеатра и сеанса они решили согласовать по телефону. Было также решено, что если с кем-то созвониться не удастся, то поход в кино отменяется. Вечером у кинотеатра собрались не все, и поэтому посещение кино сорвалось. На следующий день стали выяснять, кто кому звонил. Оказалось, что Андрей звонил Борису и Володе, Володя звонил Борису и Даше, Борис звонил Андрею и Даше, Даша звонила Андрею и Володе, а Галя звонила Андрею, Володе и Борису. Кто не сумел созвониться и поэтому не пришёл на встречу?
Галя и Даша не сумели созвониться между собой (точки Г и Д не соединены отрезком) и поэтому в соответствии с договорённостью в кино не пришли.
Теория графов — одна из самых красивых и наглядных математических теорий.
- Граф иерархической системы называется деревом. Отличительной особенностью дерева является то, что между любыми двумя его вершинами существует единственный путь. Дерево не содержит циклов и петель.
- Обычно у дерева, представляющего иерархическую систему, выделяется одна главная вершина , которая называется корнем дерева . Каждая вершина дерева (кроме корня) имеет только одного предка – обозначенный ею объект входит в один класс верхнего уровня. Любая вершина дерева может порождать несколько потомков – вершин, соответствующих классам нижнего уровня.
- Для каждой пары вершин дерева существует единственный путь , их соединяющий. Этим свойством пользуются при нахождении всех предков, например, по мужской линии, любого человека, чья родословная представлена в виде генеалогического дерева , которое является «деревом» и в смысле теории графов.
3. «Транспортная задача»
- Пусть в городе Краснодаре находится база с сырьём, которое нужно развести по городам Крымск, Темрюк, Славянск-на-Кубани и Тимашевск одним заездом, затратив при этом как можно меньше времени и топлива и вернувшись обратно в Краснодар.
4. «Логическая задача на дороги»
5. «Логическая задача на переливания»
- В ведре 8 л воды, и имеется две кастрюли емкостью 5 и 3 л. требуется отлить в пятилитровую кастрюлю 4 л воды и оставить в ведре 4 л, т. е. разлить воду поровну в ведро и большую кастрюлю.
Ситуацию в каждый момент можно описать тремя числами. В результате получаем два решения: одно в 7 ходов, другое в 8 ходов.
6. «Задача про пенсионеров»
- В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15%.Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
- Пусть х — доля мужчин-пенсионеров среди всех мужчин.
Пенсионеры составляют 0,126 взрослого населения города, откуда получаем:
Т.о., вероятность того, что случайно выбранный мужчина
окажется пенсионером, равна 0,1.
Применение графов - творчество
- Решая практические задачи с помощью теории графов необходимо в каждом шаге, в каждом этапе их решения применить творчество.
- На первом этапе нужно суметь проанализировать и закодировать условие задачи.
- Второй этап – схематическая запись, которая состоит в геометрическом представлении графов, и на этом этапе элемент творчества очень важен потому, что далеко не просто найти соответствия между элементами условия и соответствующими элементами графа.
- Метод графов интересен, красив и нагляден.
Спасибо за внимание!
Творчество и графы позволяют:
- Вычислять без всякого видимого усилия.
- Наглядно обосновывать решение.
- Упрощать условия задачи.
- Получать удовольствие от решения задачи.
- Успешно решать логические и вероятностные задачи ВПР, ОГЭ и ЕГЭ по математике.