СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Олимпиадные задания по математике (9 класс)

Категория: Математика

Нажмите, чтобы узнать подробности

Разработка содержит задания школьного уровня олимпиады по математике и их решения(9 класс)

Просмотр содержимого документа
«Олимпиадные задания по математике (9 класс)»


Школьный этап олимпиады по математике

для учащихся 9 класса


1.Докажите, что значение выражения   +   есть число рациональное.

(4балла)

2.На пост мера города претендовало три кандидата: Андреев, Борисов, Васильев. Во время выборов за Васильева было отдано в 1,5 раза больше голосов, чем за Андреева, а за Борисова – в 4 раза больше, чем за Андреева и Васильева вместе. Сколько процентов избирателей проголосовало за победителя? (4балла)

3.В прямоугольном треугольнике с катетами 3 и 4 см проведены высота прямого угла и медиана большего из острых углов. В каком отношении высота делит медиану? (5 баллов)

4.В пруд пустили 30 щук, которые постепенно поедали друг друга. Щука считается сытой, если она съедает трех щук (сытых или голодных). Каково наибольшее количество щук в этом пруду, которые могли бы почувствовать себя сытыми за достаточно большой промежуток времени? (щука может быть в некоторый момент сытой, но потом голодной). (6 баллов)

5.Пусть х и у – такие целые числа, что 3х + 7у делится на 19. Докажите, что
43х + 75у тоже делится на 19. (6 баллов)


















9 КЛАСС


Решение

1.Докажите, что значение выражения   +   есть число рациональное.

Решение:   +   =  = -  .

2.На пост мера города претендовало три кандидата: Андреев, Борисов, Васильев. Во время выборов за Васильева было отдано в 1,5 раза больше голосов, чем за Андреева, а за Борисова – в 4 раза больше, чем за Андреева и Васильева вместе. Сколько процентов избирателей проголосовало за победителя?

Ответ: 80%.

Решение: за Андреева было отдано х голосов; за Васильева было отдано 1,5х голосов; за Борисова было отдано 4 2,5х =10х голосов. Победитель – Борисов. Всего проголосовало х+1,5х +10х =12,5х человек. 12,5х – 100%; 10х – а% ; а =  

3.В прямоугольном треугольнике с катетами 3 и 4 см проведены высота прямого угла и медиана большего из острых углов. В каком отношении высота делит медиану?
Ответ: 9:8, считая от основания.
Решение. Проведем отрезок DF, параллельный высоте АЕ. По теореме Фалеса, он разделит отрезок BE пополам. По теореме Пифагора, гипотенуза треугольникаАВС равна 5 см. Кроме этого  , и  . Отсюда:  . Отсюда  . То есть ВЕ=3,2, FE=1,6, EC=1,8. Из параллельности отрезков DF и GE следует, что  .
4. В пруд пустили 30 щук, которые постепенно поедали друг друга. Щука считается сытой, если она съедает трех щук (сытых или голодных). Каково наибольшее количество щук в этом пруду, которые могли бы почувствовать себя сытыми за достаточно большой промежуток времени?( щука может быть в некоторый момент сытой, но потом съеденной)
Ответ. 9 щук.
Решение. 10 сытых щук быть не может, так как каждая из них съест хотя бы по три щуки и еще последняя останется живой. То есть щук было хотя бы 31. Пример на 9 щук строится просто: первая съела три других, следующая съела ее и две других, и т. д.

5. Пусть х и у – такие целые числа, что 3х+7у делится на 19. Докажите, что 43х+75y тоже делится на 19.
Доказательство. Попробуем представить   Отсюда:

 Отсюда, 


10 КЛАСС

Решение

  1. Докажите, что  , если  .

Доказательство. Первое решение. Если  , то условие имеет вид  , что не верно. Следовательно, если   и требуемое неравенство выполняется. Пусть  . Рассмотрим квадратичную функцию  . Поскольку  , и, по условию,  , то в точках +1 и -1 функция принимает значения разного знака и отлична от нуля. Это означает, что квадратичная функция имеет два корня, необходимым и достаточным условием которого является положительность дискриминанта, то есть  , откуда и следует требуемое неравенство.

Второе решение. Из условия имеем

 . Или  . Согласно неравенству о среднем арифметическом и среднем геометрическом  , откуда  .


  1. В десятичной записи некоторого натурального числа переставили цифры и получили число в три раза меньшее. Доказать, что исходное число делится на 27.

Доказательство. Пусть a – исходное число, а число b получено из a после перестановки некоторых цифр. По условию  , то есть число a делится на 3. Так как сумма цифр у чисел a и b одинакова, то, по признаку делимости на 3, число b тоже делится на 3. Далее, раз число b делится на 3, а число a = 3b, то a делится на 9. Теперь согласно признаку делимости на 9, число b тоже делится на 9, а значит, число a делится на 27.

Примечание. Доказано, что число a делится на 9, – 3 балла.


  1. В окружность радиуса 1 вписан правильный 2012-угольник. Найти сумму квадратов расстояний от произвольной точки окружности до всех вершин этого многоугольника.

Ответ: 4024.

Решение. Так как число вершин правильного 2012-угольника четно, то они разбиваются на 1006 пар диаметрально противоположных вершин. Пусть AB некоторый диаметр, а M – произвольная точка окружности. Если M совпадает с одной из вершин A или B, то  . Если точка M отлична и от A и от B, то треугольник MAB прямоугольный (угол AMB – вписанный и опирается на диаметр) с гипотенузой AB = 2. Тогда, по теореме Пифагора,  . Следовательно, независимо от выбора точки M, сумма квадратов расстояний от нее до вершин каждой пары диаметрально противоположных вершин постоянна и равна 4. Следовательно, сумма квадратов расстояний от точки M до вершин правильного 2012-угольника будет равна  .

Примечание. Если не рассмотрен случай совпадения точки с вершиной многоугольника – минус 1 балл.

  1. Сумма первых n членов арифметической прогрессии равна сумме первых m членов той же прогрессии. Определите сумму первых   членов этой же прогрессии.

Ответ: 0.

Решение. Обозначим через  - первый член прогрессии, а d – разность прогрессии. По условию задачи  , то есть справедливо равенство  , из которого, учитывая, что  , получаем  . Подставляя полученное выражение для   в формулу суммы первых   членов той же прогрессии, получим  .

Примечание. Верный ответ без обоснования – 1 балл.

  1. В шахматном однокруговом турнире, где каждый участник играет с каждым другим один раз, участвовало два девятиклассника и некоторое число десятиклассников. Два девятиклассника вместе набрали 8 очков, а каждый десятиклассник набрал одно и то же число очков. Сколько десятиклассников участвовало в турнире? (За победу в шахматной партии дается одно очко, за ничью – пол очка, за поражение – ноль очков).

Ответ. 7 или 14.

Решение. Пусть в турнире участвовало n десятиклассников. Так как в каждой партии всего разыгрывается одно очко, то девятиклассники в игре между собой вместе набрали 1 очко, и, следовательно, 7 очков набрали в играх с десятиклассниками. Тогда все десятиклассники суммарно набрали   очков в играх между собой и 2n7 очков в играх с двумя девятиклассниками. По условию, все десятиклассники набрали одинаковое число очков, то есть, число   кратно n. Последнее означает, что число   целое. Если n нечетно, то (n1) – четно, и, следовательно, n делит 7, то есть n = 1 или n = 7. Значение n = 1 не подходит, так как общее число набранных очков десятиклассниками будет отрицательно. Пусть n четно, то есть n = 2к. Тогда   = . Следовательно,   целое, а значит  , откуда k = 1 или k = 7. Действительно, при k 7  , а значения k   проверяются непосредственно. Значение k = 1 не подходит по тем же причинам, что и в первом случае. Таким образом, для n имеем два значения: 7 и 14. Проверкой легко убедиться, что оба значения подходят.

Примечание. Получен один ответ – 5 баллов.

5.Треугольник АВС, сумма частей окружности = 2+5+17=24

1 часть = 360/24 = 15, дуга АВ = 2 х 15 =30, дуга ВС = 5 х 15 = 75. дуга АС=17 х 15 =255

угол С =1/2 дуги АВ =30/2=15, угол А=1/2дугиВС = 75/2=37,5, угол В=1/2 дуги АС= 255/2= 127,5

АВ = R x 2 x sin15 = 0,5176R

BC = R x 2 x sin37,5 =1,2176R

AC = R x 2 x sin127,5 =1,5866R

Площадь = 1/2АС х ВС х sin15 = 1/2 х 1,5866R x 1,2176R x 0,2588 = 0,25R в квадрате  


11 КЛАСС

Решение

  1. Так как  , то графиком функции будет синусоида с выколотыми точками  .

  2. Воспользуемся формулами для синуса двойного угла:

  ,тогда получим уравнение   Далее используем формулу синуса суммы для sin 12x= sin (8x+4x) и получаем, что sin 8x cos 4x=0, откуда sin 8x=0 или cos 4x=0. Решением совокупности этих уравнений будет  . В итоге получим  .

  1. Выделим полный квадрат:  . Но первое слагаемое при любых значениях х неотрицательно, а второе слагаемое строго больше нуля, поскольку дискриминант отрицательный, следовательно, данное выражение всегда положительно. Значит, данное неравенство решений не имеет.

  2. Сложив все три уравнения системы, получим уравнение (2x+2y+2z)(x+y+z)=288,из которого найдем х+y+z=-12. Получим в первом случае х=2,y=4, z=6; а во втором случае х=-2, y=-4, z=-6.

5.Треугольник АВС, сумма частей окружности = 2+5+17=24

1 часть = 360/24 = 15, дуга АВ = 2 х 15 =30, дуга ВС = 5 х 15 = 75. дуга АС=17 х 15 =255

угол С =1/2 дуги АВ =30/2=15, угол А=1/2 дугиВС = 75/2=37,5, угол В=1/2 дуги АС= 255/2= 127,5

АВ = R x 2 x sin15 = 0,5176R

BC = R x 2 x sin37,5 =1,2176R

AC = R x 2 x sin127,5 =1,5866R

Площадь = 1/2АС х ВС х sin15 = 1/2 х 1,5866R x 1,2176R x 0,2588 = 0,25R в квадрате