СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Особенности строения растительных клеток

Категория: Биология

Нажмите, чтобы узнать подробности

Задачи:

1.Рассмотреть особенности строения растительных клеток;

2.Строение и функции органоидов, характерных для растительных клеток

Просмотр содержимого презентации
«06. Растительные клетки»

Особенности строения растительных клеток  Задачи:

Особенности строения растительных клеток

Задачи:

  • Рассмотреть особенности строения растительных клеток;
  • Строение и функции органоидов, характерных для растительных клеток
Особенности Размеры клеток большинства растений колеблются в переделах 10-1000 мкм. Форма клеток многоклеточных организмов может быть различной. Растительная клетка имеет все органоиды, свойственные другим эукариотическим организмам (животные, грибы): ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи и т.д.

Особенности

Размеры клеток большинства растений колеблются в переделах 10-1000 мкм. Форма клеток многоклеточных организмов может быть различной.

Растительная клетка имеет все органоиды, свойственные другим эукариотическим организмам (животные, грибы): ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи и т.д.

Особенности  Вместе с тем, растительная клетка отличается от животной: Прочной клеточной стенкой; Присутствием пластид; 3. Развитой системы постоянно существующих вакуолей. 4. Кроме того, в клетках большинства высших растений отсутствует клеточный центр с центриолями.

Особенности

Вместе с тем, растительная клетка отличается от животной:

  • Прочной клеточной стенкой;
  • Присутствием пластид;

3. Развитой системы постоянно существующих вакуолей.

4. Кроме того, в клетках большинства высших растений отсутствует клеточный центр с центриолями.

Особенности Клеточная стенка. Растительная клетка, как и животная, окружена цитоплазматической мембраной, поверх которой располагается, как правило, толстая клеточная стенка, отсутствующая у животных клеток. Основным компонентом клеточной стенки является целлюлоза (клетчатка). Функции клеточной стенки: придает клетке определенную форму и прочность; защищает живое содержимое клетки; играет определенную роль в поглощении, транспорте и выделении веществ;

Особенности

Клеточная стенка.

Растительная клетка, как и животная, окружена цитоплазматической мембраной, поверх которой располагается, как правило, толстая клеточная стенка, отсутствующая у животных клеток.

Основным компонентом клеточной стенки является целлюлоза (клетчатка).

Функции клеточной стенки:

придает клетке определенную форму и прочность;

защищает живое содержимое клетки;

играет определенную роль в поглощении, транспорте и выделении веществ;

Особенности Плазмодесмы — цитоплазматические тяжи, соединяющие содержимое соседних клеток. Они проходят через клеточную стенку. Плазмодесмы представляют собой узкие каналы, выстланные плазматической мембраной.

Особенности

Плазмодесмы — цитоплазматические тяжи, соединяющие содержимое соседних клеток. Они проходят через клеточную стенку.

Плазмодесмы представляют собой узкие каналы, выстланные плазматической мембраной.

Особенности Вакуоли представляют собой полости, заполненные клеточным соком и отграниченные от цитоплазмы мембраной, которую называют тонопластом . На долю вакуолей в растительной клетке приходится до 90% ее объема. Причем, вакуоли являются постоянными компонентами растительных клеток в отличие от животных, в которых могут возникать временные вакуоли.

Особенности

Вакуоли представляют собой полости, заполненные клеточным соком и отграниченные от цитоплазмы мембраной, которую называют тонопластом . На долю вакуолей в растительной клетке приходится до 90% ее объема. Причем, вакуоли являются постоянными компонентами растительных клеток в отличие от животных, в которых могут возникать временные вакуоли.

Особенности В вакуолях часто содержатся особые пигменты, придающие растительным клеткам голубую, фиолетовую, пурпурную, темно-красную и пунцовую окраску. Функции вакуолей: накапливают питательные вещества; поддерживают тургорное давление; окрашивают определенные части растений, привлекая опылителей и распространителей плодов и семян;

Особенности

В вакуолях часто содержатся особые пигменты, придающие растительным клеткам голубую, фиолетовую, пурпурную, темно-красную и пунцовую окраску. Функции вакуолей: накапливают питательные вещества; поддерживают тургорное давление; окрашивают определенные части растений, привлекая опылителей и распространителей плодов и семян;

Двумембранные органоиды. Пластиды Органоиды, характерные для растительных клеток. Образуются из пропластид, или в результате деления (редко). Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений; хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цвета; хлоропласты — зеленые пластиды.

Двумембранные органоиды. Пластиды

Органоиды, характерные для растительных клеток. Образуются из пропластид, или в результате деления (редко).

Различают три основных типа пластид:

лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений;

хромопласты окрашенные пластиды обычно желтого, красного и оранжевого цвета;

хлоропласты — зеленые пластиды.

Двумембранные органоиды. Пластиды Между пластидами возможны взаимопревращения. Наиболее часто происходит превращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету), обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

Двумембранные органоиды. Пластиды

Между пластидами возможны взаимопревращения. Наиболее часто происходит превращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету), обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

Двумембранные органоиды. Пластиды Строение . Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. Внутренняя среда хлоропласта — строма — содержит ДНК и рибосомы прокариотического типа , благодаря чему хлоропласт способен к автономному синтезу части белков и делению, как и митохондрии, но очень редко. Основные структурные элементы хлоропласта — тилакоиды . Различают тилакоиды гран , имеющие вид уплощенных мешочков, уложенных в стопки — граны ;

Двумембранные органоиды. Пластиды

Строение . Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу.

Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. Внутренняя среда хлоропласта — строма — содержит ДНК и рибосомы прокариотического типа , благодаря чему хлоропласт способен к автономному синтезу части белков и делению, как и митохондрии, но очень редко.

Основные структурные элементы хлоропласта — тилакоиды . Различают тилакоиды гран , имеющие вид уплощенных мешочков, уложенных в стопки — граны ;

Двумембранные органоиды. Пластиды тилакоиды стромы (ламеллы) , имеющие вид уплощенных канальцев и связывающие граны между собой. Тилакоиды гран связаны друг с другом таким образом, что их полости оказываются непрерывными. В каждом хлоропласте находится в среднем 40-60 гран, расположенных в шахматном порядке. Этим обеспечивается максимальная освещенность каждой граны. Функции – фотосинтез:  6СО 2 + 6Н 2 О + Q = C 6 Н 12 О 6 + 6О 2

Двумембранные органоиды. Пластиды

тилакоиды стромы (ламеллы) , имеющие вид уплощенных канальцев и связывающие граны между собой.

Тилакоиды гран связаны друг с другом таким образом, что их полости оказываются непрерывными. В каждом хлоропласте находится в среднем 40-60 гран, расположенных в шахматном порядке. Этим обеспечивается максимальная освещенность каждой граны.

Функции – фотосинтез:

6СО 2 + 6Н 2 О + Q = C 6 Н 12 О 6 + 2

Двумембранные органоиды. Пластиды Лейкопласты . Бесцветные, обычно мелкие пластиды. Встречаются в клетках органов, скрытых от солнечного света — корнях, корневищах. Тилакоиды развиты слабо. Имеют ДНК, рибосомы, а также ферменты, осуществляющие синтез и гидролиз запасных веществ. Основная функция — синтез и накопление запасных продуктов (в первую очередь крахмала, реже — белков и липидов).

Двумембранные органоиды. Пластиды

Лейкопласты .

Бесцветные, обычно мелкие пластиды. Встречаются в клетках органов, скрытых от солнечного света — корнях, корневищах.

Тилакоиды развиты слабо. Имеют ДНК, рибосомы, а также ферменты, осуществляющие синтез и гидролиз запасных веществ.

Основная функция — синтез и накопление запасных продуктов (в первую очередь крахмала, реже — белков и липидов).

Двумембранные органоиды. Пластиды Хромопласты . Встречаются в клетках лепестков многих растений, зрелых плодов, реже — корнеплодов, а также в осенних листьях. Содержат пигменты, относящиеся к группе каротиноидов , придающие им красную, желтую и оранжевую окраску. Внутренняя мембранная система отсутствует или представлена одиночными тилакоидами. Значение в обмене веществ до конца не выяснено. По-видимому, большинство из них представляют собой стареющие пластиды.

Двумембранные органоиды. Пластиды

Хромопласты .

Встречаются в клетках лепестков многих растений, зрелых плодов, реже — корнеплодов, а также в осенних листьях.

Содержат пигменты, относящиеся к группе каротиноидов , придающие им красную, желтую и оранжевую окраску.

Внутренняя мембранная система отсутствует или представлена одиночными тилакоидами.

Значение в обмене веществ до конца не выяснено. По-видимому, большинство из них представляют собой стареющие пластиды.

Двумембранные органоиды. Пластиды Согласно гипотезе симбиогенеза , хлоропласты произошли от синезеленых – цианобактерий, вступивших в симбиоз с анаэробной клеткой.

Двумембранные органоиды. Пластиды

Согласно гипотезе симбиогенеза , хлоропласты произошли от синезеленых – цианобактерий, вступивших в симбиоз с анаэробной клеткой.

Двумембранные органоиды. Пластиды Цианобактерии стали хлоропластами, при фотосинтезе именно они начали выделять кислород в атмосферу. Доказательства : у хлоропластов своя ДНК, кольцевая, как у бактерий, синтезируются свои белки, могут размножаться – как бактерии – делением. Но в процессе симбиоза большая часть генов перешла в ядро.

Двумембранные органоиды. Пластиды

Цианобактерии стали хлоропластами, при фотосинтезе именно они начали выделять кислород в атмосферу.

Доказательства : у хлоропластов своя ДНК, кольцевая, как у бактерий, синтезируются свои белки, могут размножаться – как бактерии – делением. Но в процессе симбиоза большая часть генов перешла в ядро.

Дайте ответы на вопросы:

Дайте ответы на вопросы:

  • Что обозначено цифрами 1 — 7?
  • Каковы основные функции хлоропластов?
  • Как образуются новые пластиды?
  • Какова масса пластидных рибосом?
  • Что известно о наследственном аппарате хлоропластов?
  • Каковы появились хлоропласты?
  • Как происходят взаимопревращения пластид?
Поясните рисунок:

Поясните рисунок:

Пластиды Поясните рисунок:

Пластиды

Поясните рисунок:

Пластиды Поясните рисунок:

Пластиды

Поясните рисунок:

Пластиды Поясните рисунок:

Пластиды

Поясните рисунок: