СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 05.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Презентация к проекту по теме "Ультразвук"

Категория: Физика

Нажмите, чтобы узнать подробности

УЛЬТРАЗВУК – это  не слышимые человеческим ухом упругие волны, частоты которых превышают 20 кГц. Если  его частота от  109     до       1012-13  Гц, то такой ультразвук принято называть гиперзвуком.        

Просмотр содержимого документа
«Презентация к проекту по теме "Ультразвук"»

Ультразвук в технике и медицине

Ультразвук в технике и медицине

УЛЬТРАЗВУК – это не слышимые человеческим ухом упругие волны, частоты которых превышают 20 кГц.  Если его частота  от  до    Гц, то такой ультразвук принято называть гиперзвуком .

УЛЬТРАЗВУК – это не слышимые человеческим ухом упругие волны, частоты которых превышают 20 кГц. Если его частота от до Гц, то такой ультразвук принято называть гиперзвуком .

Область частот ультразвука можно подразделить на три области: Низких частот ( Гц) – УНЧ. Средних частот (  Гц) – УСЧ. Высоких частот ( Гц) – УЗВЧ. Каждая из этих подобластей характеризуется своими особенностями, временем , расстоянием распространения и применением.

Область частот ультразвука можно подразделить на три области:

  • Низких частот ( Гц) – УНЧ.
  • Средних частот ( Гц) – УСЧ.
  • Высоких частот ( Гц) – УЗВЧ.

Каждая из этих подобластей характеризуется своими особенностями, временем , расстоянием распространения и применением.

Физические свойства и особенности распространения: Частотная граница между звуковыми и ультразвуковыми волнами условна. Однако благодаря более высоким частотам и малым длинам волн имеет место ряд особенностей ультразвука. Так, для УЗВЧ длины волн в воздухе составляют см, а в воде  см и в стали см.

Физические свойства и особенности распространения:

Частотная граница между звуковыми и ультразвуковыми волнами условна. Однако благодаря более высоким частотам и малым длинам волн имеет место ряд особенностей ультразвука. Так, для УЗВЧ длины волн в воздухе составляют см, а в воде

см и в стали

см.

Ультразвук в газах, в частности в воздухе, распространяется с большим затуханием. Жидкости и твердые тела представляют собой, как правило, хорошие проводники, затухание в которых значительно меньше.

Ультразвук в газах, в частности в воздухе, распространяется с большим затуханием. Жидкости и твердые тела представляют собой, как правило, хорошие проводники, затухание в которых значительно меньше.

Волны большой интенсивности сопровождаются рядом эффектов, которые могут быть описаны лишь законами нелинейной акустики . Так, распространению ультразвуковых волн в газах и жидкостях сопутствует движение среды, которое называется акустическим течением. Скорость акустического течения зависит от вязкости среды, интенсивности ультразвука и его частоты; она мала и составляет доли % от скорости ультразвука. Фазовая скорость гармонической волны

Волны большой интенсивности сопровождаются рядом эффектов, которые могут быть описаны лишь законами нелинейной акустики . Так, распространению ультразвуковых волн в газах и жидкостях сопутствует движение среды, которое называется акустическим течением. Скорость акустического течения зависит от вязкости среды, интенсивности ультразвука и его частоты; она мала и составляет доли % от скорости ультразвука.

Фазовая скорость гармонической волны

Генерация ультразвука: Устройства для генерирования ультразвуковых колебаний делятся на две группы: Устройства для генерирования ультразвуковых колебаний делятся на две группы: Устройства для генерирования ультразвуковых колебаний делятся на две группы: Механические(в них источником ультразвука является механическая энергия потока газа или жидкости) Электромеханические(ультразвуковая энергия получается преобразованием электрической) Механические(в них источником ультразвука является механическая энергия потока газа или жидкости) Электромеханические(ультразвуковая энергия получается преобразованием электрической) Механические(в них источником ультразвука является механическая энергия потока газа или жидкости) Электромеханические(ультразвуковая энергия получается преобразованием электрической) Форма колебаний (сверху) и частотно-амплитудный спектр (снизу) звуков рояля (основная частота 128 Гц).

Генерация ультразвука:

Устройства для генерирования ультразвуковых колебаний делятся на две группы:

  • Устройства для генерирования ультразвуковых колебаний делятся на две группы:
  • Устройства для генерирования ультразвуковых колебаний делятся на две группы:
  • Механические(в них источником ультразвука является механическая энергия потока газа или жидкости) Электромеханические(ультразвуковая энергия получается преобразованием электрической)
  • Механические(в них источником ультразвука является механическая энергия потока газа или жидкости) Электромеханические(ультразвуковая энергия получается преобразованием электрической)
  • Механические(в них источником ультразвука является механическая энергия потока газа или жидкости)
  • Электромеханические(ультразвуковая энергия получается преобразованием электрической)

Форма колебаний (сверху) и частотно-амплитудный спектр (снизу) звуков рояля (основная частота 128 Гц).

Механические излучатели: Механические излучатели ультразвука – воздушные и жидкостные свистки и сирены - отличаются простотой устройства и эксплуатации, не требуют дорогостоящей электрической энергии высокой частоты, КПД около 20-30%. Свисток из рога косули.

Механические излучатели:

Механические излучатели ультразвука – воздушные и жидкостные свистки и сирены - отличаются простотой устройства и эксплуатации, не требуют дорогостоящей электрической энергии высокой частоты, КПД около 20-30%.

Свисток из рога косули.

Основной недостаток – сравнительно широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет их использовать в измерительных целях; они применяются главным образом в промышленной ультразвуковой технологии и частично – как средства сигнализации. Каждый маяк имеет свою систему оповещения. Чаще всего это сирены и диафоны.

Основной недостаток – сравнительно широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет их использовать в измерительных целях; они применяются главным образом в промышленной ультразвуковой технологии и частично – как средства сигнализации.

Каждый маяк имеет свою систему оповещения. Чаще всего это сирены и диафоны.

Применение ультразвука: Применения ультразвука чрезвычайно разнообразны. Он служит мощным методом исследования различных областей физики(изучение твердого тела и полупроводников), играет большую роль в изучении вещества. Ультразвук широко применяется в технике, биологии и медицине. Изображение человеческого плода (17 недель), полученное с помощью ультразвука частотой 5 мгц.

Применение ультразвука:

Применения ультразвука чрезвычайно разнообразны. Он служит мощным методом исследования различных областей физики(изучение твердого тела и полупроводников), играет большую роль в изучении вещества. Ультразвук широко применяется в технике, биологии и медицине.

Изображение человеческого плода (17 недель), полученное с помощью ультразвука частотой 5 мгц.

Ультразвук в технике. Используя явление отражения ультразвука на границе различных сред, констатируют ультразвуковые приборы для измерения размеров изделий или для определения уровня воды в недоступных емкостях. Ультразвук малой интенсивности широки используется для целей неразрушающего контроля изделий

Ультразвук в технике.

Используя явление отражения ультразвука на границе различных сред, констатируют ультразвуковые приборы для измерения размеров изделий или для определения уровня воды в недоступных емкостях. Ультразвук малой интенсивности широки используется для целей неразрушающего контроля изделий

При помощи ультразвука осуществляется звуковидение: преобразуя ультразвуковые колебания в электрические, а их – в световые, оказывается возможным видеть те или иные предметы в непрозрачной для света среде. Звуковидение по методу поверхностного рельефа: 1 — источник звука; 2 — объект; 3 — вогнутое зеркало; 4 — жидкость; 5 — сосуд; 6 — экран.

При помощи ультразвука осуществляется звуковидение: преобразуя ультразвуковые колебания в электрические, а их – в световые, оказывается возможным видеть те или иные предметы в непрозрачной для света среде.

Звуковидение по методу поверхностного рельефа: 1 — источник звука; 2 — объект; 3 — вогнутое зеркало; 4 — жидкость; 5 — сосуд; 6 — экран.

Весьма важную роль ультразвук играет в гидроакустике, поскольку упругие волны являются единственным видом волн, хорошо распространяющимся в морской воде. На этом принципе построены такие приборы, как эхолот или гидролокатор. Принцип работы гидролокатора: 1 — излучатель; 2 — приемник; 3 — отражающее тело.

Весьма важную роль ультразвук играет в гидроакустике, поскольку упругие волны являются единственным видом волн, хорошо распространяющимся в морской воде. На этом принципе построены такие приборы, как эхолот или гидролокатор.

Принцип работы гидролокатора: 1 — излучатель; 2 — приемник; 3 — отражающее тело.

Эксперимент. Для эксперимента взяли ультразвуковой излучатель, создающий воздушные колебания с длиной волны порядка 20 миллиметров. Теоретически, говорят учёные, в таком акустическом поле могут левитировать предметы размером в половину длины волны, а то и меньше. На самом деле: ОНИ ПАРЯТ В ВОЗДУХЕ!

Эксперимент.

Для эксперимента взяли ультразвуковой излучатель, создающий воздушные колебания с длиной волны порядка 20 миллиметров. Теоретически, говорят учёные, в таком акустическом поле могут левитировать предметы размером в половину длины волны, а то и меньше. На самом деле: ОНИ ПАРЯТ В ВОЗДУХЕ!

Ультразвук в медецине Диагностики Терапевтических целях Ультразвуковой хирургии Для применения в медецинской и лабораторной практики.

Ультразвук в медецине

  • Диагностики
  • Терапевтических целях
  • Ультразвуковой хирургии
  • Для применения в медецинской и лабораторной практики.
Ультразвук в природе. Целый ряд животных способен воспринимать или излучать частоты упругих волн значительно выше 20 КГц, что используется, например для отпугивания чаек от водоемов с питьевой водой. Колония черноголовых хохотунов

Ультразвук в природе.

Целый ряд животных способен воспринимать или излучать частоты упругих волн значительно выше 20 КГц, что используется, например для отпугивания чаек от водоемов с питьевой водой.

Колония черноголовых хохотунов

Мелкие насекомые при своем полете создают ультразвуковые волны. Летучие мыши, имея совсем слабое зрение, или вовсе не имея его, ориентируются в полете и ловят добычу методом ультразвуковой локации. Водяная ночница.

Мелкие насекомые при своем полете создают ультразвуковые волны. Летучие мыши, имея совсем слабое зрение, или вовсе не имея его, ориентируются в полете и ловят добычу методом ультразвуковой локации.

Водяная ночница.

Они излучают своим голосовым аппаратом ультразвуковые импульсы с частотой повторения несколько Гц и несущей частотой 50-60 Гц. Дельфины излучают и воспринимают ультразвук до частот 170 КГц; метод ультразвуковой локации у них еще совершеннее, чем у летучих мышей. Дельфины.

Они излучают своим голосовым аппаратом ультразвуковые импульсы с частотой повторения несколько Гц и несущей частотой 50-60 Гц. Дельфины излучают и воспринимают ультразвук до частот 170 КГц; метод ультразвуковой локации у них еще совершеннее, чем у летучих мышей.

Дельфины.

Спасибо за внимание!

Спасибо за внимание!


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!