Ультразвук в технике и медицине
УЛЬТРАЗВУК – это не слышимые человеческим ухом упругие волны, частоты которых превышают 20 кГц. Если его частота от до Гц, то такой ультразвук принято называть гиперзвуком .
Область частот ультразвука можно подразделить на три области:
- Низких частот ( Гц) – УНЧ.
- Средних частот ( Гц) – УСЧ.
- Высоких частот ( Гц) – УЗВЧ.
Каждая из этих подобластей характеризуется своими особенностями, временем , расстоянием распространения и применением.
Физические свойства и особенности распространения:
Частотная граница между звуковыми и ультразвуковыми волнами условна. Однако благодаря более высоким частотам и малым длинам волн имеет место ряд особенностей ультразвука. Так, для УЗВЧ длины волн в воздухе составляют см, а в воде
см и в стали
см.
Ультразвук в газах, в частности в воздухе, распространяется с большим затуханием. Жидкости и твердые тела представляют собой, как правило, хорошие проводники, затухание в которых значительно меньше.
Волны большой интенсивности сопровождаются рядом эффектов, которые могут быть описаны лишь законами нелинейной акустики . Так, распространению ультразвуковых волн в газах и жидкостях сопутствует движение среды, которое называется акустическим течением. Скорость акустического течения зависит от вязкости среды, интенсивности ультразвука и его частоты; она мала и составляет доли % от скорости ультразвука.
Фазовая скорость гармонической волны
Генерация ультразвука:
Устройства для генерирования ультразвуковых колебаний делятся на две группы:
- Устройства для генерирования ультразвуковых колебаний делятся на две группы:
- Устройства для генерирования ультразвуковых колебаний делятся на две группы:
- Механические(в них источником ультразвука является механическая энергия потока газа или жидкости) Электромеханические(ультразвуковая энергия получается преобразованием электрической)
- Механические(в них источником ультразвука является механическая энергия потока газа или жидкости) Электромеханические(ультразвуковая энергия получается преобразованием электрической)
- Механические(в них источником ультразвука является механическая энергия потока газа или жидкости)
- Электромеханические(ультразвуковая энергия получается преобразованием электрической)
Форма колебаний (сверху) и частотно-амплитудный спектр (снизу) звуков рояля (основная частота 128 Гц).
Механические излучатели:
Механические излучатели ультразвука – воздушные и жидкостные свистки и сирены - отличаются простотой устройства и эксплуатации, не требуют дорогостоящей электрической энергии высокой частоты, КПД около 20-30%.
Свисток из рога косули.
Основной недостаток – сравнительно широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет их использовать в измерительных целях; они применяются главным образом в промышленной ультразвуковой технологии и частично – как средства сигнализации.
Каждый маяк имеет свою систему оповещения. Чаще всего это сирены и диафоны.
Применение ультразвука:
Применения ультразвука чрезвычайно разнообразны. Он служит мощным методом исследования различных областей физики(изучение твердого тела и полупроводников), играет большую роль в изучении вещества. Ультразвук широко применяется в технике, биологии и медицине.
Изображение человеческого плода (17 недель), полученное с помощью ультразвука частотой 5 мгц.
Ультразвук в технике.
Используя явление отражения ультразвука на границе различных сред, констатируют ультразвуковые приборы для измерения размеров изделий или для определения уровня воды в недоступных емкостях. Ультразвук малой интенсивности широки используется для целей неразрушающего контроля изделий
При помощи ультразвука осуществляется звуковидение: преобразуя ультразвуковые колебания в электрические, а их – в световые, оказывается возможным видеть те или иные предметы в непрозрачной для света среде.
Звуковидение по методу поверхностного рельефа: 1 — источник звука; 2 — объект; 3 — вогнутое зеркало; 4 — жидкость; 5 — сосуд; 6 — экран.
Весьма важную роль ультразвук играет в гидроакустике, поскольку упругие волны являются единственным видом волн, хорошо распространяющимся в морской воде. На этом принципе построены такие приборы, как эхолот или гидролокатор.
Принцип работы гидролокатора: 1 — излучатель; 2 — приемник; 3 — отражающее тело.
Эксперимент.
Для эксперимента взяли ультразвуковой излучатель, создающий воздушные колебания с длиной волны порядка 20 миллиметров. Теоретически, говорят учёные, в таком акустическом поле могут левитировать предметы размером в половину длины волны, а то и меньше. На самом деле: ОНИ ПАРЯТ В ВОЗДУХЕ!
Ультразвук в медецине
- Диагностики
- Терапевтических целях
- Ультразвуковой хирургии
- Для применения в медецинской и лабораторной практики.
Ультразвук в природе.
Целый ряд животных способен воспринимать или излучать частоты упругих волн значительно выше 20 КГц, что используется, например для отпугивания чаек от водоемов с питьевой водой.
Колония черноголовых хохотунов
Мелкие насекомые при своем полете создают ультразвуковые волны. Летучие мыши, имея совсем слабое зрение, или вовсе не имея его, ориентируются в полете и ловят добычу методом ультразвуковой локации.
Водяная ночница.
Они излучают своим голосовым аппаратом ультразвуковые импульсы с частотой повторения несколько Гц и несущей частотой 50-60 Гц. Дельфины излучают и воспринимают ультразвук до частот 170 КГц; метод ультразвуковой локации у них еще совершеннее, чем у летучих мышей.
Дельфины.
Спасибо за внимание!