СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Проект. Физика в быту

Категория: Физика

Нажмите, чтобы узнать подробности

Актуальность работы в том, что физика открывает нам многие тайны природы, объясняет и вполне обыденные явления, с которыми мы сталкиваемся ежедневно, и те, которые скрыты от наших глаз, но оказывают влияние на процессы, происходящие на Земле и в космосе.

Приближаются весенние каникулы, и многие родители задумываются: чем занять своих детей? Домашние эксперименты по физике  - отличное развлечение для младших школьников.

Просмотр содержимого документа
«Проект. Физика в быту»

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ШКОЛА № 48 ГОРОДА ДОНЕЦКА»







Проект


Физика в быту




















Выполнил:

ученик 11 класса

Тимошенко Никифор

Руководитель:

учитель физики

Дерябина Светлана Борисовна




Г. Донецк

2022





Введение


Физика окружает нас везде, особенно дома. Мы привыкли её не замечать.

Знание физических явлений и законов помогает нам в домашних делах, защищает от ошибок. Физика является одной из важнейших наук. Она оказала настолько серьезное влияние на жизнь человечества, что этого просто невозможно не заметить.

Достаточно окинуть взглядом то, что сейчас нас окружает – в производстве всех находящихся вокруг предметов важнейшую роль сыграли достижения физики. В наше время эта наука активно развивается, в ней появилось такое по-настоящему загадочное направление, как квантовая физика. Открытия, сделанные в этой области, могут неузнаваемо изменить жизнь человека.

Актуальность работы в том, что физика открывает нам многие тайны природы, объясняет и вполне обыденные явления, с которыми мы сталкиваемся ежедневно, и те, которые скрыты от наших глаз, но оказывают влияние на процессы, происходящие на Земле и в космосе.

Приближаются весенние каникулы, и многие родители задумываются: чем занять своих детей? Домашние эксперименты по физике - отличное развлечение для младших школьников.

Объект исследования: предмет физики в домашних условиях.

Цель: предоставить обучающимся младших классов возможность познакомиться с физическими явлениями под наблюдением взрослых в домашних условиях.


Основная часть


  1. Физика в повседневной жизни

Представьте себе свой обычный день. Вот вы встали с кровати, потянулись и посмотрели в зеркало. И законы физики заработали прямо с началом вашего дня! Движение, отражение в зеркале, гравитация, которая заставляет вас идти по земле, а воду течь в раковину, а не вам в лицо, сила, которая требуется для того, чтобы поднять сумку или открыть дверь – все это физика. Обратите внимание на лифт, легко и быстро поднимающий вас на нужный этаж, автомобиль или другой транспорт, компьютеры, планшеты и телефоны. Без физики все это никуда бы не поехало, не включилось и не заработало. Развитие физики можно приравнять к прогрессу. Сначала люди поняли законы оптики и изобрели простые очки, чтобы те, кто плохо видит, могли лучше ориентироваться, читать и писать. А затем на свете появились микроскопы, с помощью которых ученые сделали невероятные открытия в таких областях, как биология и медицина. И телескопы, в которые астрономы увидели планеты, звезды и целые галактики и смогли сделать выводы об устройстве Вселенной. Каждое открытие в физике помогает человечеству сделать новый шаг вперед.

Хорошо, скажете вы. Но ведь для всего перечисленного, для всех этих открытий и разработок существуют физики. То есть люди, сознательно выбравшие именно эту науку своей основной профессией. Причем же здесь остальные? Им-то на что эти знания, если можно просто прочитать инструкцию к своему телефону и этого будет достаточно для его использования? Приведем несколько примеров из повседневной жизни, когда базовое знание физики может пригодиться каждому. Итак, все во Вселенной постоянно двигается, включая нашу планету и землю, по которой мы ходим. А ходим мы почти ежедневно в разные места. Значит, мы постоянно рассчитываем, насколько быстро доберемся до театра, работы, друзей, чтобы не опоздать. Задачи на скорость мы решаем в средней школе в рамках курса математики, но на самом деле это базовая физика. Теперь представьте, что вы выбираете машину. У вас есть желание получить резвый автомобиль, но вам нужно возить семью, поэтому размер тоже имеет значение. То есть резвый и большой. И как же понять, какой подойдет? На что вы обратите внимание? На ускорение, конечно! Есть такой параметр – постоянное ускорение, то есть разгон от 0 до 100 км за количество секунд. Так вот чем меньше время от 0 до 100, тем бодрее будет ваша машина на старте и виражах. И это подскажет вам физика!

Физика расскажет и о законе тяготения. То есть мы уже и так знаем, что если бросить предмет, то он упадет на землю. Что это значит? Земля притягивает нас и все предметы. Мало того, планета Земля притягивает даже такой тяжелый космический предмет, как Луна. Заметим, что Луна не улетает по своей траектории и каждый вечер показывается людям. Также не зависают в воздухе любые штуки, которые мы в сердцах бросили на пол. На брошенные предметы действует еще и ускорение, потому что у Земли огромная сила притяжения. А также сила трения. Поэтому, зная об этих законах, можно понять, что происходит, если человек прыгает с парашютом. Связана ли площадь парашюта с замедлением скорости падения? Может, стоит просить парашют побольше? Как действует импульс на коленки парашютиста, и почему нельзя приземляться на прямые ноги? А что с физикой, которая окружает нас в доме?

    1. Физика на кухне

Ежедневно мы проводим на кухне 1−2 часа. Кто-то меньше, кто-то больше. При этом мы редко задумываемся о физических явлениях, когда готовим завтрак, обед или ужин. А ведь большей их концентрации в бытовых условиях, чем на кухне, в квартире и быть не может.

Теплопроводность

Чтобы остудить горячий чай мы используем законы физики.

Скорость испарения жидкости зависит:

- от площади поверхности (наливаем чай в блюдечко);

- от ветра (дуем);

- от рода жидкости;

- от температуры жидкости.



Пример использования теплопроводности:


Ч тобы стеклянный стакан не лопнул, когда в него наливают кипяток, в него

кладут металлическую ложку.

Металлическая ложечка служит для выравнивания перепада температур и способствует тому, чтобы  стакан  равномерно нагрелся и не лопнул.




Электромагнитное излучение

М икроволновку иногда называют сверхвысокочастотной печью, или СВЧ-печью. Основной элемент каждой микроволновки - магнетрон, который преобразует электрическую энергию в сверхвысокочастотное электромагнитное излучение частотой до 2,45 гигагерц (ГГц).

Излучение разогревает еду, взаимодействуя с ее молекулами.

В продуктах есть дипольные молекулы, содержащие на противоположных своих частях положительные электрические и отрицательные заряды. Это молекулы жиров, сахара, но больше всего дипольных молекул в воде, которая содержится почти в любом продукте. СВЧ-поле, постоянно меняя свое направление, заставляет с высокой частотой колебаться молекулы, которые выстраиваются вдоль силовых линий так, что все положительные заряженные части молекул «смотрят», то в одну, то в другую сторону. Возникает молекулярное трение, выделяется энергия, что и нагревает пищу.


Индукция

  На кухне все чаще можно встретить индукционные плиты, в основе работы которых заложено это явление. Английский физик Майкл Фарадей открыл электромагнитную индукцию в 1831 году и с тех пор без нее невозможно представить нашу жизнь. Фарадей обнаружил возникновение электрического тока в замкнутом контуре из-за изменения магнитного потока, проходящего через этот контур. Известен школьный опыт, когда плоский магнит перемещается внутри спиралеобразного контура из проволоки (соленоида), и в ней появляется электрический ток. Есть и обратный процесс – переменный электроток в соленоиде (катушке) создает переменное магнитное поле.

По такому же принципу работает и современная индукционная плита. Под стеклокерамической нагревательной панелью (нейтральна к электромагнитным колебаниям) такой плиты находится индукционная катушка, по которой течет электроток с частотой 20−60 кГц, создавая переменное магнитное поле, наводящее вихревые токи в тонком слое дна металлической посуды. Из-за электрического сопротивления посуда нагревается. Эти токи не более опасны, чем раскаленная посуда на обычных плитах. Посуда должна быть стальной или чугунной, обладающей ферромагнитными свойствами (притягивать магнит).


    1. Физика в ванной

Ванна сравнительно безопасное место, но только пока вы в ней осторожны. Множество людей, поскользнувшись, падают в ванне по причинам, о которых мы поговорим попозже. Поэтому, стоя в ванне или возле нее, не следует делать резких движений, особенно, если пол и дно ванны влажные и скользкие. Не используйте также для опытов стеклянные сосуды. Они падают и разбиваются, а острые осколки стекла трудно обнаружить в ванне.


Волны

П осмотрите на наполненную ванну, когда поверхность воды спокойна. Бросим в нее маленький тяжелый предмет, например, кусочек металла или камешек. Тотчас вокруг места, где камень ударился о воду, образуется волна и начнет кольцом расходиться по ванне. Если предмет не очень мал, можно наблюдать вторую и третью волны, следующие за первой, иногда целую цепочку волн. Для образования длинного ряда волн ванна мала, но такой ряд легко увидеть, бросив большой камень в пруд. 
      Почему образуется волна? Ударяясь о поверхность, предмет вытесняет воду. В результате маленький водяной холм вырастает вокруг предмета. Иногда вода выталкивается так быстро, что часть ее отрывается от поверхности и разбрызгивается во все стороны.

 Водяной холм, конечно же, не стоит на месте - вода вокруг точки, где предмет ударился о поверхность, приходит в сложное колебательное движение. Каждый небольшой объем воды движется вверх и вниз и вызывает аналогичное движение соседних с ним объемов, происходящее, однако, с некоторой задержкой во времени. Вы сами можете наблюдать колебания воды с помощью пробки или другого небольшого легкого предмета, плавающего на поверхности воды.

Световые волны

Теперь рассмотрим другой вид волн - световые. 
      Нальем в ванну воду так, чтобы ее глубина составляла около 10 см. Закроем кран и подождем несколько минут, пока вода успокоится. Посмотрев вниз, мы увидим свое зеркальное изображение, довольно ясное. Сделаем его ярче, поднеся к лицу карманный фонарик. Пошевелим в воде пальцами - изображение исказится, заколышется, а через некоторое время опять вернется к первоначальному виду. Взболтаем воду сильнее. На этот раз изображение может и вовсе исчезнуть.

 Почему поверхность воды создает зеркальное изображение? Почему оно не такое четкое, как в обычном зеркале? Почему карманный фонарик у лица делает его ярче? Почему изображение исчезает, когда поверхность воды становится неровной?

 Лучше всего, прежде чем отвечать на эти вопросы, погасить свет в ванной комнате и направить карманный фонарик на поверхность воды. Желательно, чтобы пучок света был бы как можно более узким, поэтому наденьте на фонарик картонную трубку или трубку из скатанных и склеенных листов бумаги. Тогда пучок света почти не будет расходиться (будет параллельным. Направим его на поверхность воды и посмотрим, что из этого получится. Сначала держите фонарик наклонно. Отражается ли хотя бы часть света от поверхности воды? Существует несколько способов проверить это. Один из них — увидеть пятно света на стене возле ванны. Если в воздухе есть пылинки, то иногда можно даже увидеть отраженный пучок света. Вы можете создать искусственную запыленность воздуха — например, рассыпать немного порошка талька над пучком. Можно сжечь кусок бумаги, создав немного дыма на пути отраженного пучка. Частички, взвешенные в воздухе, рассеивают свет и делают пучок видимым.


« Изгиб» прямой палки

Что происходит со светом, который не отразился от поверхности воды в ванне, а прошел в воду? Давайте проделаем следующее: заполним ванну до обычного уровня и опустим в воду немного наклонно прямую палку. Посмотрев на палку, вы убедитесь, что она больше не кажется прямой. Та часть, которая находится под водой, как бы загнута кверху. Чуть-чуть вытянем палку из воды. По-прежнему наружная ее часть совершение прямая, а часть, оставшаяся под водой, загнута кверху Вытащим совсем палку из воды. Она опять окажется прямой. Изогнутость полностью исчезла. 


      Конечно, ясно, что на самом деле палка не изгибалась и не разгибалась в зависимости от ее положения в воде. Можно попытаться потрогать место «изгиба» под водой - вы убедитесь, что его попросту не существует. Здесь явно имеет место оптический обман, при котором мы видим то, чего нет на самом деле. Зеркальное изображение тоже ведь по сути обман такого рода. Предметы, которые мы видим за зеркалом, находятся на самом деле не там, а совсем в другом месте.

2.Физические явления в доме

2.1 Конвекция

Конвекция - это процесс

т еплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.

Впервые термин «конвекция» был предложен английским ученым Вильямом Прутом еще в 1834 году. Использовался он для описания перемещения тепловых масс в нагретых, движущихся жидкостях. Первые теоретические исследования явления конвекции стартовали лишь в 1916 году.

В основе явления конвекции лежит расширение более холодного вещества при соприкосновении с горячими массами. В таких обстоятельствах нагреваемое вещество теряет плотность и становится легче по сравнению с окружающим его холодным пространством. Наиболее точно данная характеристика явления соответствует перемещению тепловых потоков при нагревании воды. Движение молекул в противоположных направлениях под воздействием нагревания – это именно то, на чем основывается конвекция. Излучение, теплопроводность выступают схожими процессами, однако, касаются прежде всего передачи тепловой энергии в твердых телах. Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов. Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи.


2.2 Диффузия

С этим явлением на кухне мы сталкиваемся постоянно. Его название образовано от латинского diffusio - взаимодействие, рассеивание, распространение. Это процесс взаимного проникновения молекул или атомов двух граничащих веществ.

Скорость диффузии пропорциональна площади поперечного сечения тела (объему), и разности концентраций, температур смешиваемых веществ. Если есть разница температуры, то она задает направление распространения (градиент) - от горячего к холодному. В итоге происходит самопроизвольное выравнивание концентраций молекул или атомов.

Это явление на кухне можно наблюдать при распространении запахов. Благодаря диффузии газов, сидя в другой комнате, можно понять, что готовится. Как известно, природный газ не имеет запаха, и к нему примешивают добавку, чтобы легче было обнаружить утечку бытового газа. 

Если бросить в кипяток крупинки чая или заварной пакетик и не размешивать, то можно увидеть, как распространяется чайный настой в объеме чистой воды. Это диффузия жидкостей. Примером диффузии в твердом теле может быть засолка помидор, огурцов, грибов или капусты. Кристаллы соли в воде распадаются на ионы Na и Cl, которые, хаотически двигаясь, проникают между молекулами веществ в составе овощей или грибов.


2.3 Поверхностное натяжение

П оверхностное натяжение. Многие помнят опыты с пленками жидкостей, которые показывали на уроках физики в школе. Небольшую проволочную рамку с одной подвижной стороной опускали в мыльную воду, а затем вытаскивали. Силы поверхностного натяжения в образовавшейся по периметру пленке поднимали нижнюю подвижную часть рамки. Чтобы сохранить ее неподвижной, к ней подвешивали грузик при повторном проведении опыта. Это явление можно наблюдать в дуршлаге - после использования в дырочках дна этой кухонной посуды остается вода. Такое же явление можно наблюдать после мойки вилок - на внутренней поверхности между некоторыми зубьями также есть полоски воды.

Физика жидкостей объясняет это явление так: молекулы жидкости настолько близки друг к другу, что силы притяжения между ними создают поверхностное натяжение в плоскости свободной поверхности. Если сила притяжения молекул воды пленки жидкости слабее силы притяжения к поверхности дуршлага, то водная пленка разрывается. Также силы поверхностного натяжения заметны, когда мы будем сыпать в кастрюлю с водой крупу или горох, бобы, или добавлять круглые крупинки перца. Некоторые зерна останутся на поверхности воды, тогда как большинство под весом остальных опустятся на дно. Если кончиком пальца или ложкой слегка надавить на плавающие крупинки, то они преодолеют силу поверхностного натяжения воды и опустятся на дно.


2.4 Преломление света

П реломление света. Угол падения света равен углу отражения, а распространение естественного света или света от ламп объясняется двойственной, корпускулярно-волновой природой: с одной стороны - это электромагнитные волны, а с другой - частицы-фотоны, которые двигаются с максимально возможной во Вселенной скоростью. На кухне можно наблюдать такое оптическое явление, как преломление света. Например, когда на кухонном столе стоит прозрачная ваза с цветами, то стебли в воде как бы смещаются на границе поверхности воды относительно своего продолжения вне жидкости. Дело в том, что вода, как линза, преломляет лучи света, отраженные от стеблей в вазе. Подобное наблюдается и прозрачном стакане с чаем, в который опущена ложка. Также можно видеть искаженное и увеличенное изображение фасоли или крупы на дне глубокой кастрюли с прозрачной водой.

Заключение

В наше время, когда техника развивается стремительными темпами, физика - одна из востребованных наук. Наблюдая за окружающим нас сложным миром, можно заметить множество происходящих процессов. Солнце сияет, звезды мерцают, лампочки светят, машины едут, принтеры печатают, люди ходят пешком и ездят на велосипедах, реки текут и т.д. При более внимательном изучении этих процессов неизбежно возникает множество вопросов. Как мы видим? Почему мы теплые на ощупь? Из чего состоит вдыхаемый нами воздух? Почему мы соскальзываем вниз по заснеженному склону? Как устроены сияющие ночью звезды? Или это планеты? Почему они движутся? Как устроена эта крошка пыли? Существуют ли невидимые нами миры? Что такое свет? Почему одеяла согревают нас? Из чего состоит вещество? Что произойдет, если прикоснуться к линии высокого напряжения? Ответ на этот вопрос, конечно, хорошо известен. Даже ограниченное знание основ физики порой может спасти жизнь. Физика - это особого рода исследование мира и принципов его устройства: от самых основных (как, например, законов инерции, согласно которым так трудно вручную сдвинуть с места неподвижный автомобиль) до более экзотичных (законов крошечных миров внутри элементарных частиц, которые являются фундаментальными строительными блоками вещества). В своей основе физика охватывает все, что мы знаем о нашем мире. Являясь одним из трех китов, на которых зиждется современная система мироустройства, физика, является наукой о природе в самом широком понимании этого слова. Кроме того, что она изучает материальные и энергетические параметры организации вселенной, она также ставит перед собой задачи пояснения и логического обоснования фундаментальных взаимодействий в природе, управляющих движением материи. На самом деле, именно физика является основным двигателем технического прогресса человечества в целом. Не умаляя в этом заслуг и иных отраслей научной мысли, все же хочется упомянуть о таких величайших гениях рода человеческого как Исаак Ньютон, Альберт Эйнштейн, Никола Тесла и пр., и пр. Именно физики позволили человечеству сделать не просто шаг в направлении своего технического развития, но совершить гигантский скачок. За последние 100 лет человек овладел энергией атома, повсеместно внедрил электричество во все сферы жизни, создал то, без чего вы не смогли бы прочитать эти строки – интернет, завоевал воздушное, водное и начал исследование подводного пространства нашей планеты. Создал супер прочные материалы, обладающие невиданными до селе свойствами, вычислительные машины, выполняющие миллиарды логических операций в секунду, проник в бескрайние глубины человеческого мозга, увидел мельчайших обитателей нашей планеты, которых теперь мы называем вирусами, научился искусственно выращивать и трансплантировать человеческие органы и вырвался за пределы атмосферы планеты земля. Всего не перечесть. Но и этого я думаю достаточно, чтобы понять в полной мере, что же из себя представляет физическая наука. Может возникнуть вопрос, - зачем физика нужна? Позволим себе ответить на него опять же таки вопросом, - а зачем сороконожке ноги, птицам крылья, а растениям солнце? Правильно, - да потому, что без всего этого им не обойтись! Физика сегодня необходима нам как никогда раньше. Ведь мы используем законы физики каждый день, в своей повседневной жизни…- когда готовим еду, смотрим телевизор или же просто принимаем ванну. Законы Архимеда, законы, применяемые в оптике, или физические законы из раздела гидро-газо-динамики стали для нас чем-то на столько обыденным, что мы уже просто не обращаем на них своего внимания, а зря…Физика – это в первую очередь, возможность человека как можно более глубже познать окружающий его мир, упорядочить систему его мировосприятия и осознать себя неотъемлемой его частью! Физическая наука всеобъемлюща в своем стремлении охватить как можно больше и как можно более детально описать то, что попадает в поле зрения ее апологетов, и поэтому с полным правом может претендовать на почетное звание королевы наук!


Список используемой литературы

1.Блудов М.И. Беседы по физике.- М; Просвещение, 1980.

2.Тарасов Л.В. " Физика в природе". М; Вербум-М, 2002.

3.Большая энциклопедия Кирилла и Мефодия 2000.- М.: Кирилл и Мефодий, 1999

4. Беркинблит М.Б., Глаголева Е.Г. " Электричество в живых организмах"- М; "Наука" 1988.

5. Элиот Л., Уилкокс У. Физика.- М; "Наука".1975.

6. Перельман Я. И. Занимательная физика.- М; " АСТ" 2005.

7. Энциклопедия « Физика для детей». М.: Аванта+, 2001

8. Куприн М.Я. Физика в нашей жизни. М.: Просвещение, 1985.

9. Ланина Ч.Я. Не уроком единым. М.: Просвещение, 1991.

10. Кириллова И.Г. « Книга для чтения по физике». М.: Просвещение, 1986

11. Рыженков А.П. Физика. Человек. М.: Просвещение, 2001.

12. Алексеева М.Н. «Физика– юным». Электричество. М.: Просвещение, 1980

13. Дягилев Ф.М. « Из истории физики и жизни её творцов». М.: Просвещение,1986

14. Хуторской А.В., Хуторская Л.Н. Увлекательная физика. - М.: АРКТИ, 2000.

15. Манойлов В.Е. Электричество и человек. – Л.: Энергоатомиздат, 1988.

16. Суорц Кл.Э. необыкновенная физика обыкновенных явлений, - М., 1986.

17. Силин А.А. Трение и мы. – М., 1987.

18. Ланина И.Я. Внеклассная работа по физике. - М.: Просвещение, 1977.

19. Гнедина Т.Е. Физика и творчество в твоей профессии: Книга для учащихся старших классов. - М.: Просвещение, 1988.

20. Бутырский Г.А. Экспериментальные задачи по физике 10-11 класс. - М.:Просвещение, 2000.

21. Безденежных Е.А., Брикман И.С. Физика в живой природе и медицине. – Киев, 1976.

22. Гальперштейн Л. Здравствуй физика! - М.: Просвещение, 1973.

23. Рыдник В.И. О современной акустике. - М.: Просвещение, 1979.

24. Удивительный мир физики. — М.: Знание, 1980.

25. Мигдал А. Б. Как рождаются физические теории. — М.: Педагогика, 1984.



















14



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!