Периксинский имени Героя Советского Союза Антонова Семена Михеевича филиал МБОУ « Сатинская СОШ»
Рассмотрена на заседании Утверждена приказом
педагогического совета протокол № от
№ от
Рабочая программа
по учебному предмету
геометрия
8 класс
Составила учитель физики и математики Варенко Н.В.
2018 — 2019 учебный год
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа по геометрии для 8 класса общеобразовательной школы составлена на основе закона РФ «Об образовании», федерального государственного образовательного стандарта основного общего образования / Министерство образования и науки РФ. – М.: Просвещение, 2011(Стандарты второго поколения) Приказ Министерства образования и науки РФ от 17.12.2010 № 1897, программы общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы А. Г. Мерзляк, В. Б. Полонский, М. С. Якир– М: Вентана – Граф, 2012 – с. 112)
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта для 8 классов и дает распределение учебных часов по разделам курса.
Рабочая программа выполняет две основные функции.
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Структура документа
Рабочая программа включает: пояснительную записку, основное содержание, учебно-тематический план, требования к уровню подготовки обучающихся, список литературы, календарно-тематический план.
Общая характеристика учебного предмета
Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Геометрия является одним из опорных школьных предметов. Геометрические знания и умения необходимы для изучения других школьных дисциплин (физика, география, химия, информатика и др.).
Одной из основных целей изучения геометрии является развитие мышления, прежде всего формирование абстрактного мышления. В процессе изучения геометрии формируются логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность.
Обучение геометрии даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.
В процессе изучения геометрии школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.
Знакомство с историей развития геометрии как науки формирует у учащихся представления о геометрии как части общечеловеческой культуры.
Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, доказательство, обобщение и систематизацию.
Цели обучения
Изучение геометрии в 8 классе направлено на достижение следующих целей:
В направлении личностного развития:
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей.
В метапредметном направлении:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
В предметном направлении:
овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
Место предмета в федеральном базисном учебном плане
Согласно учебному плану Периксинского филиала МБОУ "Сатинская СОШ "на изучение геометрии в 8 классе отводится 70 часов из расчета 2 часа в неделю. Рабочая программа рассчитана на 70 часов.
Результаты обучения
Результаты обучения представлены в требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие 8 класс, и достижение которых является обязательным условием для продолжения образования в 9 классе.
Основное содержание учебного предмета (70 часов)
Четырёхугольники
Четырёхугольник и его элементы-2ч
Параллелограмм. Свойства параллелограмма-2ч
Признаки параллелограмма-2ч
Прямоугольник-2ч
Ромб-2ч
Квадрат-1ч
Контрольная работа №1-1ч
Средняя линия треугольника-1ч
Трапеция-4ч
Центральные и вписанные углы-2ч
Вписанные и описанные четырёхугольники-2ч
Контрольная работа №2-1ч
Подобие треугольников
Теорема Фалеса. Теорема о пропорциональных отрезках-6ч
Подобные треугольники-1ч
Первый признак подобия треугольников-5ч
Второй и третий признаки подобия треугольников-3ч
Контрольная работа №3-1ч
Решение прямоугольных треугольников
Метрические соотношения в прямоугольном треугольнике-1ч
Теорема Пифагора-5ч
Контрольная работа № 4-1ч
Тригонометрические функции острого угла прямоугольного треугольника-3ч
Решение прямоугольных треугольников-3ч
Контрольная работа№5-1ч
Многоугольники. Площадь многоугольника
Многоугольники-1ч
Понятие площади многоугольника. Площадь прямоугольник-1ч
Площадь параллелограмма-2ч
Площадь треугольника-2ч
Площадь трапеции-3ч
Контрольная работа №6-1ч
Повторение и систематизация учебного материала
Упражнения для повторения курса 8 класса-7ч
Контрольная работа № 7-1ч
Учебно-тематический план
Название тема, раздела | Количество часов | Характеристика основных видов деятельности ученика (на уровне УУД) |
Глава 1 Четырёхугольники | 22 | Пояснять, что такое четырёхугольник. Описывать элементы четырёхугольника. Распознавать выпуклые и невыпуклые четырёхугольники. Изображать и находить на рисунках четырёхугольники разных видов и их элементы. Формулировать: определения: параллелограмма, высоты параллелограмма; прямоугольника, ромба, квадрата; средней линии треугольника; трапеции, высоты трапеции, средней линии трапеции; центрального угла окружности, вписанного угла окружности; вписанного и описанного четырёхугольника; свойства: параллелограмма, прямоугольника, ромба, квадрата, средних линий треугольника и трапеции, вписанного угла, вписанного и описанного четырёхугольника; признаки: параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольника. Доказывать: теоремы о сумме углов четырёхугольника, о градусной мере вписанного угла, о свойствах и признаках параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольника. Применять изученные определения, свойства и признаки к решению задач. |
Глава 2 Подобие треугольников | 16 | Формулировать: определение подобных треугольников; свойства: медиан треугольника, биссектрисы треугольника, пересекающихся хорд, касательной и секущей; признаки подобия треугольников. Доказывать: теоремы: Фалеса, о пропорциональных отрезках, о свойствах медиан треугольника, биссектрисы треугольника; свойства: пересекающихся хорд, касательной и секущей; признаки подобия треугольников. Применять изученные определения, свойства и признаки к решению задач |
Глава 3 Решение прямоугольных треугольников | 14 | Формулировать: определения: синуса, косинуса, тангенса, котангенса острого угла прямоугольного треугольника; свойства: выражающие метрические соотношения в прямоугольном треугольнике и соотношения между сторонами и значениями тригонометрических функций в прямоугольном треугольнике. Записывать тригонометрические формулы, выражающие связь между тригонометрическими функциями одного и того же острого угла. Решать прямоугольные треугольники. Доказывать: теорему о метрических соотношениях в прямоугольном треугольнике, теорему Пифагора; формулы, связывающие синус, косинус, тангенс, котангенс одного и того же острого угла. Выводить основное тригонометрическое тождество и значения синуса, косинуса, тангенса и котангенса для углов 30°, 45°, 60°. Применять изученные определения, теоремы и формулы к решению задач |
Глава 4 Многоугольники. Площадь многоугольника | 10 | Пояснять, что такое площадь многоугольника. Описывать многоугольник, его элементы; выпуклые и невыпуклые многоугольники. Изображать и находить на рисунках многоугольник и его элементы; многоугольник, вписанный в окружность, и многоугольник, описанный около окружности. Формулировать: определения: вписанного и описанного многоугольника, площади многоугольника, равновеликих многоугольников; основные свойства площади многоугольника. Доказывать: теоремы о сумме углов выпуклого n-угольника, площади прямоугольника, площади треугольника, площади трапеции. Применять изученные определения, теоремы и формулы к решению задач. |
Повторение и систематизация учебного материала | 8 | Знать материал, изученный в курсе математики за 8 класс Уметь применять полученные знания на практике. Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде. |
ИТОГО: | 70 | |
Планируемые результаты обучения геометрии в 8 классе
В результате изучения курса геометрии в 8 классе ученик:
научится:
Геометрические фигуры
Выпускник научится:
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• классифицировать геометрические фигуры;
• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
• доказывать теоремы;
• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
• решать простейшие планиметрические задачи в пространстве. Выпускник получит возможность:
• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
• научиться решать задачи на построение методом геометрического места точек и методом подобия;
• приобрести опыт выполнения проектов. Измерение геометрических величин Выпускник научится:
• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций;
• вычислять длины линейных элементов фигур и их углы, используя формулы площадей фигур;
• решать задачи на доказательство с использованием формул площадей фигур;
• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность научиться:
• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников;
• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.
Учебно- методический комплекс учителя:
1. Геометрия:8 класс: учебник для учащихся общеобразовательных учреждений/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2012.
2. Геометрия: 8 класс: дидактические материалы: сборник задач и контрольных работ/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2013.
3. Геометрия: 8 класс: рабочие тетради №1,2/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2013.
4. Геометрия: 7 класс: методическое пособие/ Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2013.
Справочные пособия, научно – популярная и историческая литература
Гаврилова Т.Д. Занимательная математика:5-11 классы. – Волгоград: Учитель, 2008.
Левитас Г.Г. Нестандартные задачи по математике.- М.: Илекса, 2007.
Екимова М.А, Кукин Г.П. Задачи на разрезание. – М.: МЦНМО,2002
Перли С.С., Перли Б.С. Страницы русской истории на уроках математики. – М. : Педагогика-Пресс,1994.
Пичугин Л.Ф. За станицами учебника алгебры. – М.: Просвещение, 2010.
Шарыгин.И.Ф., Ерганжиева Л.Н. Наглядная геометрия. – М. :МИРОС,1995.
Фарков А.В. Математические олимпиады в школе : 5-11 классы. М.: Айрис-Пресс