СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Производная и её геометрический смысл. Правила дифференцирования.

Категория: Алгебра

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Производная и её геометрический смысл. Правила дифференцирования.»

Н я А Е А

Н

я

А

Е

А

Производная Учитель математики МБОУ «Нижнедевицкая гимназия» Быканова Л.И.

Производная

Учитель математики МБОУ «Нижнедевицкая гимназия»

Быканова Л.И.

Содержание Понятие производной. Алгоритм нахождения производной. Примеры. Таблица производных. Физический смысл производной. Правила нахождения производных. Непрерывность функции. Геометрический смысл производной.

Содержание

  • Понятие производной.
  • Алгоритм нахождения производной.
  • Примеры.
  • Таблица производных.
  • Физический смысл производной.
  • Правила нахождения производных.
  • Непрерывность функции.
  • Геометрический смысл производной.
Понятие производной Производной функции у = f(x), заданной на некотором интервале (a;  b), в некоторой точке х этого интервала называют предел отношения приращения функции в этой точке к соответствующему приращению аргумента, когда приращение аргумента стремится к нулю. ∆ f f ′(x) = lim ∆ x ∆ x →0  Нахождение производной называют дифференцированием

Понятие производной

Производной функции у = f(x), заданной на некотором интервале (a; b), в некоторой точке х этого интервала называют предел отношения приращения функции в этой точке к соответствующему приращению аргумента, когда приращение аргумента стремится к нулю.

f

f ′(x) = lim

x

x →0

Нахождение производной называют дифференцированием

Понятие производной у ∆ f f ′(x) = lim ∆ x ∆ x →0  f(x 0 ) у = f(x) ∆ f f(x 0 + ∆ х) ∆ х х 0 х 0 х 0 + ∆ х

Понятие производной

у

f

f ′(x) = lim

x

x →0

f(x 0 )

у = f(x)

f

f(x 0 + х)

х

х 0

х

0

х 0 + х

Алгоритм нахождения производной Зафиксировать значение х 0 , найти f(x 0 ) . Дать аргументу х 0 приращение ∆ х , перейти в новую точку х 0 + ∆ х , найти f(x 0 + ∆ х) . Найти приращение функции: ∆ f = f(x 0 + ∆ х) – f(x 0 ) . Составить отношение . Вычислить lim . Этот предел и есть f ′ (x 0 ) . ∆ f ∆ х ∆ f ∆ х ∆ x→0

Алгоритм нахождения производной

  • Зафиксировать значение х 0 , найти f(x 0 ) .
  • Дать аргументу х 0 приращение х , перейти в новую точку х 0 + х , найти f(x 0 + х) .
  • Найти приращение функции: f = f(x 0 + х) – f(x 0 ) .
  • Составить отношение .
  • Вычислить lim .
  • Этот предел и есть f (x 0 ) .

f

х

f

х

x→0

Примеры 1. Найти производную функции y = kx + b в точке х o

Примеры

1. Найти производную функции y = kx + b в точке х o

Примеры 2. Найти производную функции y = C (C – const) в точке х o

Примеры

2. Найти производную функции y = C (C – const) в точке х o

Примеры 3. Найти производную функции y = x 2  в точке х o

Примеры

3. Найти производную функции y = x 2 в точке х o

Примеры 4. Найти производную функции y = √x в точке х o

Примеры

4. Найти производную функции y = √x в точке х o

Примеры 4. Найти производную функции y = √x в точке х o

Примеры

4. Найти производную функции y = √x в точке х o

Примеры 5. Найти производную функции y = 1/x в точке х o

Примеры

5. Найти производную функции y = 1/x в точке х o

Примеры 5. Найти производную функции y = 1/x в точке х o

Примеры

5. Найти производную функции y = 1/x в точке х o

Таблица производных f (x) C f ′(x) 0 f (x) kx + b √ x k f ′(x) x 2 1/(2 √ x) e x 2x x n 1/x nx n–1 a x e x a x lna – 1/x 2 tg x sin x 1/cos 2 x ctg x cos x cos x – 1/sin 2 x ln x – sin x 1/x log a x 1/(x lna)

Таблица производных

f (x)

C

f ′(x)

0

f (x)

kx + b

x

k

f ′(x)

x 2

1/(2x)

e x

2x

x n

1/x

nx n–1

a x

e x

a x lna

1/x 2

tg x

sin x

1/cos 2 x

ctg x

cos x

cos x

1/sin 2 x

ln x

sin x

1/x

log a x

1/(x lna)

Физический ( механический ) смысл производной Если при прямолинейном движении путь s , пройденный точкой, есть функция от времени t , т.е. s = s(t) , то скорость точки есть производная от пути по времени, т.е. v(t) = s′(t) . Производная выражает мгновенную скорость в момент времени t .

Физический ( механический ) смысл производной

Если при прямолинейном движении путь s , пройденный точкой, есть функция от времени t , т.е. s = s(t) , то скорость точки есть производная от пути по времени, т.е. v(t) = s′(t) .

Производная выражает мгновенную скорость в момент времени t .

Правила нахождения производной 1. Если функции u(x) и v(x) имеют в точке х производные, то их сумма u(x) + v(x) также имеет в этой точке производную, причем (u + v)′ = u′ + v′ 2. Если функция u(x) имеет в точке х производную и С – данное число, то функция С ∙ u(x) также имеет в этой точке производную, причем (Сu)′ = С∙u′

Правила нахождения производной

1. Если функции u(x) и v(x) имеют в точке х производные, то их сумма u(x) + v(x) также имеет в этой точке производную, причем

(u + v)′ = u′ + v′

2. Если функция u(x) имеет в точке х производную и С – данное число, то функция С u(x) также имеет в этой точке производную, причем

(Сu)′ = С∙u′

Правила нахождения производной 3. Если функции u(x) и v(x) имеют в точке х производные, то их произведение u(x)  ∙  v(x) также имеет в этой точке производную, причем (u ∙ v)′ = u′∙v + u∙v′ 4. Если функция v(x) имеет в точке х производную и v(x) ≠ 0 , то функция   также имеет в этой точке производную, причем 1 v(x) v′ (  ) ′ 1 = – v v  2 17

Правила нахождения производной

3. Если функции u(x) и v(x) имеют в точке х производные, то их произведение u(x) v(x) также имеет в этой точке производную, причем

(u ∙ v)′ = u′∙v + u∙v′

4. Если функция v(x) имеет в точке х производную и v(x) ≠ 0 , то функция также имеет в этой точке производную, причем

1

v(x)

v′

( )

1

= –

v

v 2

17

Правила нахождения производной 5. Если функции u(x) и v(x) имеют в точке х производные и v(x) ≠ 0 , то функция   также имеет в этой точке производную, причем u(x) v(x) ( ) u u′v – uv′ ′ = v v  2 18

Правила нахождения производной

5. Если функции u(x) и v(x) имеют в точке х производные и v(x) ≠ 0 , то функция также имеет в этой точке производную, причем

u(x)

v(x)

( )

u

u′v – uv′

=

v

v 2

18

Производная сложной функции ( f ( g(x) ) ) ′ = f′ ( g(x) ) ∙g′(x) Примеры: 1. ( (5x – 3) 3 ) ′ = 3(5x – 3) 2 ∙(5x – 3) ′ = = 3(5x – 3) 2 ∙ 5 = 15(5x – 3) 2  2. ( sin(4x + 8) ) ′ = cos(4x + 8)∙(4x + 8) ′ = = cos(4x + 8)∙4 = 4 cos(4x + 8)

Производная сложной функции

( f ( g(x) ) ) = f′ ( g(x) ) ∙g′(x)

Примеры:

1. ( (5x – 3) 3 ) = 3(5x – 3) 2 ∙(5x – 3) =

= 3(5x – 3) 2 ∙ 5 = 15(5x – 3) 2

2. ( sin(4x + 8) ) = cos(4x + 8)∙(4x + 8) =

= cos(4x + 8)∙4 = 4 cos(4x + 8)

Если функция имеет производную (дифференцируема) в точке х , то она непрерывна в этой точке.

Если функция имеет производную (дифференцируема) в точке х , то она непрерывна в этой точке.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!