СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по физике 10 класс

Категория: Физика

Нажмите, чтобы узнать подробности

          Рабочая программа разработана в соответствии с федеральным компонентом Государственного стандарта среднего (полного) общего образования по физике с учетом Примерной программы среднего (полного) общего образования (базовый уровень; 10—11-й классы).

 

Просмотр содержимого документа
«Рабочая программа по физике 10 класс»

Муниципальное бюджетное общеобразовательное учреждение

Соленоозерная средняя школа № 12


Согласовано: Утверждаю:

Заместитель директора по УВР Директор МБОУ СоленоозернойСШ№12

____________ Е.В. Фейлер _____________ Т.В. Бехер

_______________________ Приказ № _______ от _____________







Рабочая программа

по физике

10 класс

2017-2018 учебный год


Составитель: Поротова Г.Е. – учитель физики



Рассмотрена на

ШМО учителей

Протокол № ____

от «__» _______ 2017 г.








с.Соленоозерное, 2017


Пояснительная записка

- Федеральный компонент государственного стандарта общего образования (приказ Министерства образования и науки РФ № 1089 от 05.03.2004г.)

- письмо Минобрнауки РФ от 07.07.2005 г. № 103-1263 « О примерных программах по учебным предметам федерального базисного учебного плана»;

- Образовательная программа МБОУ Соленоозерная СШ №12 (приказ №237 от 01.09.2017г.)

-Положение МБОУ Соленоозерная СШ №12 «О порядке разработки и утверждения рабочих программ учебных предметов, курсов, дисциплин (модулей)» (приказ №73 от 26.08.2016г.)

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества способствует формированию современного научного мировоззрения. Для решения задач, формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии физической географии, технологии, ОБЖ.

Курс физики 10,11 классов в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механика, молекулярная физика, термодинамика, электростатика, электродинамика, квантовая физика и элементы астрофизики.

Особенностью предмета физика в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.

Данная программа разработана в соответствии с федеральным компонентом Государственного стандарта среднего (полного) общего образования по физике с учетом Примерной программы среднего (полного) общего образования (базовый уровень; 10—11-й классы).























Цели изучения физики в 10 м классе на базовом уровне:

освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; о наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; о методах научного познания природы;

овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ, практического использования физических знаний;

развитие познавательных интересов, интеллектуальныхи творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации, в том числе средств современных информационных технологий; формирование умений оценивать достоверность естественнонаучной информации;

воспитание убеждённости в необходимости познания законов природы и использования достижений физики на благо развития человеческой цивилизации; сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, а также чувства ответственности за охрану окружающей среды;

использование приобретённых знаний и умений для решения практических задач повседневной жизни и обеспечения безопасности собственной жизни. Изучение физики в 10—11-м классах на базовом уровне знакомит учащихся с основами физики и её применением, влияющим на развитие цивилизации. Понимание основных законов природы и влияние науки на развитие общества — важнейший элемент общей культуры.

Физика как учебный предмет важна и для формирования научного мышления: на примере физических открытий учащиеся постигают основы научного метода познания. При этом целью обучения должно быть не заучивание фактов и формулировок, а понимание основных физических явлений и их связей с окружающим миром.

Программа даёт возможность подготовиться к ЕГЭ по физике наиболее успевающим учащимся.

Эффективное изучение учебного предмета предполагает преемственность, когда постоянно привлекаются полученные ранее знания, устанавливаются новые связи в изучаемом материале. Это особенно важно учитывать при изучении физики в старших классах, поскольку многие из изучаемых вопросов уже знакомы учащимся по курсу физики основной школы. Следует учитывать, однако, что среди старшеклассников, выбравших изучение физики на базовом уровне, есть и такие, у кого были трудности при изучении физики в основной школе. Поэтому в данной программе предусмотрено повторение и углубление основных идей и понятий, изучавшихся в курсе физики основной школы. Главное отличие курса физики старших классов от курса физики основной школы состоит в том, что в основной школе изучались физические явления, а в 10—11-м классах изучаются основы физических теорий и важнейшие их применения. При изучении каждой учебной темы надо сфокусировать внимание учащихся на центральной идее темы и её практическом применении. Только в этом случае будет достигнуто понимание темы, осознана её ценность — как познавательная, так и практическая. Во всех учебных темах необходимо обращать внимание на взаимосвязь теории и практики.

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Задачи обучения физике:

  • Формирования у обучающихся умения видеть и понимать ценность образования, значимость физического знания для каждого человека; умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определённой системой ценностей, формулировать и обосновывать собственную позицию;

  • Вырабатывание у обучающихся целостного преставления о мире и роли физики в создании современной естественнонаучной картины мира; умения объяснять объекты и процессы окружающей действительности – природной, социальной, культурной и технической среды, используя для этого физические знания;

  • Приобретение учащимися опыта разнообразной деятельности, познания и самопознания; ключевых компетентностей, имеющих универсальное значение для различных видов деятельности: навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, сотрудничества, эффективного и безопасного использования различных технических устройств;

  • Овладение системой научных знаний о физических свойствах окружающего мира, об основных физических законах и о способах их использования в практической деятельности.

Учебная программа 10 класса рассчитана на 68 часов, по 2 часа в неделю.

Программой предусмотрено изучение разделов:

1.

Физика и методы научного познания

1 час

2. Механика 24 часа

2.1.

Кинематика

9 часов

2.2.

Динамика

8 часов

2.3.

Законы сохранения

7 часов

3. Молекулярная физика. Термодинамика 20 часов

3.1.

Основы молекулярно-кинетической теории

6 часов

3.2.

Температура. Энергия теплового движения молекул

2 часа

3.3.

Уравнение состояния идеального газа. Газовые законы

2 часа

3.4.

Взаимные превращения жидкостей и газов. Твердые тела

3 часа

3.5.

Основы термодинамики

7 часов

4. Основы электродинамики 22 часа

4.1.

Электростатика

9 часов

4.2.

Законы постоянного тока

8 часов

4.3.

Электрический ток в различных средах

5 часов

5. Резервное время 1 час

По программе за год учащиеся должны выполнить 4 контрольные работы и 4 лабораторные работы.















Содержание программы2

Научный метод познания природы

Физика – фундаментальная наука о природе. Научный метод познания. Методы научного исследования физических явлений. Эксперимент и теория в процессе познания природы. Погрешности измерения физических величин. Научные гипотезы. Модели физических явлений. Физические законы и теории. Границы применимости физических законов. Физическая картина мира. Открытия в физике – основа прогресса в технике и технологии производства.

Механика

Системы отсчета. Скалярные и векторные физические величины. Механическое движение и его виды. Относительность механического движения. Мгновенная скорость. Ускорение. Равноускоренное движение. Движение по окружности с постоянной по модулю скоростью. Принцип относительности Галилея. Масса и сила. Законы динамики. Способы измерения сил. Инерциальные системы отсчета. Закон всемирного тяготения. Закон сохранения импульса. Кинетическая энергия и работа. Потенциальная энергия тела в гравитационном поле. Потенциальная энергия упруго деформированного тела. Закон сохранения механической энергии.

Демонстрации

  1. Зависимость траектории от выбора отсчета.

  2. Падение тел в воздухе и в вакууме.

Лабораторные работы

Изучение закона сохранения механической энергии.

Молекулярная физика

Молекулярно – кинетическая теория строения вещества и ее экспериментальные основания.

Абсолютная температура. Уравнение состояния идеального газа. Связь средней кинетической энергии теплового движения молекул с абсолютной температурой. Строение жидкостей и твердых тел. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Принципы действия тепловых машин. Проблемы теплоэнергетики и охрана окружающей среды.

Демонстрации

  1. Механическая модель броуновского движения.

  2. Изменение давления газа с изменением температуры при постоянном объеме.

  3. Изменение объема газа с изменением температуры при постоянном давлении.

  4. Изменение объема газа с изменением давления при постоянной температуре.

Лабораторные работы

Опытная проверка закона Гей-Люссака.

Электродинамика

Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Разность потенциалов. Источники постоянного тока. Электродвижущая сила. Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Полупроводники.

Демонстрации

  1. Электризация тел.

  2. Электрометр.

Лабораторные работы

  1. Изучение последовательного и параллельного соединения проводников.

  2. Измерение ЭДС и внутреннего сопротивления источника тока.

Экспериментальная физика

Опыты, иллюстрирующие изучаемые явления.


Требования3 к уровню подготовки учеников 10 класса

В результате изучения физики в 10 классе ученик должен:

знать/понимать

  • смысл понятий: физическое явление, физическая величина, модель, гипотеза, физический закон, теория, принцип, постулат, пространство, время, вещество, взаимодействие, инерциальная система отсчета, материальная точка, идеальный газ, электромагнитное поле;

  • смысл физических величин: путь, перемещение, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, момент силы, период, частота, амплитуда колебаний, длина волны, внутренняя энергия, удельная теплота парообразования, удельная теплота плавления, удельная теплота сгорания, температура, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, напряженность электрического поля, разность потенциалов, электроемкость, энергия электрического поля, электродвижущая сила;

  • смысл физических законов, принципов, постулатов: принципы суперпозиции и относительности, закон Паскаля, закон Архимеда, законы динамики Ньютона, закон всемирного тяготения, закон сохранения импульса и механической энергии, закон сохранения энергии в тепловых процессах, закон термодинамики, закон сохранения электрического заряда, закон Ома для участка электрической цепи, закон Джоуля – Ленца, закон Гука, основное уравнение кинетической теории газов, уравнение состояния идеального газа, закон Кулона, закон Ома для полной цепи; основные положения изучаемых физических теорий и их роль в формировании научного мировоззрения;

уметь

  • описывать и объяснять:

физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, тепловое действие тока;

физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел;

результаты экспериментов: независимость ускорения свободного падения от массы падающего тела; нагревание газа при его быстром сжатии и охлаждение при быстром расширении; повышение давления газа при его нагревании в закрытом сосуде; броуновское движение; электризацию тел при их контакте; зависимость сопротивления полупроводников от температуры и освещения;

описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;

  • приводить примеры практического применения физических знаний законов механики, термодинамики и электродинамики в энергетике;

  • определять характер физического процесса по графику, таблице, формуле;

  • отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;

  • приводить примеры опытов, иллюстрирующих, что наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;

  • измерять расстояние, промежутки времени, массу, силу, давление, температуру, влажность воздуха, силу тока, напряжение, электрическое сопротивление, работу и мощность электрического тока; скорость, ускорение свободного падения; плотность вещества, работу, мощность, энергию, коэффициент трения скольжения, удельную теплоемкость вещества, удельную теплоту плавления льда, ЭДС и внутреннее сопротивление источника тока; представлять результаты измерений с учетом их погрешностей;

  • применять полученные знания для решения физических задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

    • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и охраны окружающей среды;

    • определения собственной позиции по отношению к экологическим проблемам и поведению в природной среде.

































Календарно – тематическое планирование


№ урока

Тема урока

Дата

по плану

Дата по факту

Форма контроля

Введение (1 час)

Что изучает физика. Физические явления. Наблюдения и опыты.




Тема 1. Механика (24 часа) Кинематика (9 часов)

Механическое движение, виды движений, его характеристики.




Равномерное движение тел. Скорость. Уравнение равномерного движения. Решение задач.




Графики прямолинейного равномерного движения. Решение задач.




Скорость при неравномерном движении. Мгновенная скорость. Сложение скоростей.




Прямолинейное равноускоренное движение.




Решение задач на движение с постоянным ускорением.




Движение тел. Поступательное движение. Материальная точка.




Решение задач по теме «Кинематика».




Контрольная работа № 1 "Кинематика".




Динамика (8 часов)

Взаимодействие тел в природе. Явление инерции. Инерциальная система отсчета. Первый закон Ньютона.




Понятие силы как меры взаимодействия тел. Решение задач.




Второй закон Ньютона. Третий закон Ньютона.




Принцип относительности Галилея.




Явление тяготения. Гравитационные силы.




Закон всемирного тяготения.




Первая космическая скорость.

Вес тела. Невесомость и перегрузки.




Силы упругости. Силы трения.




Законы сохранения (7 часов)

Импульс материальной точки. Закон сохранения импульса.




Реактивное движение. Решение задач (закон сохранения импульса).




Работа силы. Мощность. Механическая энергия тела: потенциальная и кинетическая.




Закон сохранения энергии в механике.




Практическая работа №1. «Изучение закона сохранения механической энергии».




Обобщающее занятие. Решение задач.




Контрольная работа № 2. "Динамика. Законы сохранения в механике".




Тема 2. Молекулярная физика. Термодинамика (20 часов) Основы молекулярно-кинетической теории (6 часов)

Строение вещества. Молекула. Основные положения МКТ. Экспериментальное доказательство основных положений МКТ. Броуновское движение.




Масса молекул. Количество вещества.




Решение задач на расчет величин, характеризующих молекулы.




Силы взаимодействия молекул.

Строение твердых, жидких и газообразных тел.




Идеальный газ в МКТ. Основное уравнение МКТ.




Решение задач.




Температура. Энергия теплового движения молекул (2 часа)

Температура. Тепловое равновесие.




Абсолютная температура. Температура – мера средней кинетической энергии движения молекул.




Уравнение состояния идеального газа. Газовые законы (2 часа)

Уравнение состояния идеального газа. Газовые законы.




Практическая работа №2. «Опытная проверка закона Гей-Люссака».




Взаимные превращения жидкостей и газов. Твердые тела (3 часа)

Насыщенный пар. Зависимость давления насыщенного пара от температуры. Кипение. Испарение жидкостей.




Влажность воздуха и ее измерение.




Кристаллические и аморфные тела.




Основы термодинамики ( 7 часов)

Внутренняя энергия. Работа в термодинамике.




Количество теплоты. Удельная теплоемкость.




Первый закон термодинамики. Решение задач.




Необратимость процессов в природе. Решение задач.




Принцип действия и КПД тепловых двигателей.




Повторительно-обобщающий урок по темам «Молекулярная физика. Термодинамика».




Контрольная работа № 3. «Молекулярная физика. Основы термодина-мики».




Тема 3. Основы термодинамики (22 часа)

Электростатика (9 часов)

Что такое электродинамика. Строение атома. Электрон. Электрический заряд и элементарные частицы.




Закон сохранения электрического заряда. Закон Кулона.




Решение задач. Закон сохранения электрического заряда и закон Кулона.




Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Решение задач.




Силовые линии электрического поля. Решение задач.




Решение задач.




Потенциальная энергия заря-женного тела в однородном электростати-ческом поле.




Потенциал электростати-ческого поля. Разность потенциалов. Связь между напряженностью поля и напряжением.




Конденсаторы. Назначение, устройство и виды.




Законы постоянного тока (8 часов)

Электрический ток. Условия, необходимые

для его существования.




Закон Ома для участка цепи. Последовательное и параллельное соединение проводников.




Практическая работа №3: «Изучение последовательного и параллельного соединения проводников».




Работа и мощность постоянного тока.




Электродвижущая сила. Закон Ома для полной цепи.




Практическая работа №4. «Измерение ЭДС и внутреннего сопротивления источника тока».




Решение задач (законы постоянного тока).




Контрольная работа № 4. "Законы постоянного тока».




Электрический ток в различных средах (5 часов)

Электрическая проводимость различных веществ. Зависимость сопротивления проводника от температуры. Сверхпроводимость.




Электрический ток в полупроводниках. Применение полупроводниковых приборов.




Электрический ток в вакууме. Электронно-лучевая трубка.




Электрический ток в жидкостях. Закон электролиза.




Электрический ток в газах. Несамостоятельный и самостоятельный разряды.




Резерв




Критерии и нормы оценки знаний, умений и навыков учащихся.

Критерии оценивания контрольных работ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов.

Оценка «4» ставится за работу выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «3» ставится, если ученик правильно выполнил не менее 2/3 всей

работы или допустил не более одной грубой ошибки и.двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4 - 5 недочётов.

Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Критерии оценивания лабораторных работ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

Оценка «4» ставится, если выполнены требования к оценке «5» , но было допущено два - три недочета, не более одной негрубой ошибки и одного недочёта.

Оценка «3» ставится, если работа выполнена не полностью, но объем выполненной части таков, позволяет получить правильные результаты и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

Оценка «2» ставится, если работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Критерии оценивания устных ответов учащихся

Оценка «5» ставиться в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение физических величин, их единиц и способов измерения: правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, 6eз использования связей с ранее изученным материалом и материалом, усвоенным при изучении др. предметов: если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «3» ставиться, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросов программного материала: умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул, допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

Критерии оценивания расчетной задачи.

Оценка «5»Получен верный ответ в общем виде и правильный численный ответ с указанием его размерности, при наличии исходных уравнений в «общем» виде – в «буквенных» обозначениях;

отсутствует численный ответ, или арифметическая ошибка при его получении, или неверная запись размерности полученной величины;

Оценка «4»задача решена по действиям, без получения общей формулы вычисляемой величины.

Записаны ВСЕ необходимые уравнения в общем виде и из них можно получить правильный ответ (ученик не успел решить задачу до конца или не справился с математическими трудностями)

Оценка «3» Записаны отдельные уравнения в общем виде, необходимые для решения задачи.

Оценка «2» Грубые ошибки в исходных уравнениях.

Перечень ошибок

Грубые ошибки

1. Незнание определений основных понятий, законов, правил, основных положений теории, формул, общепринятых символов обозначения физических величии, единиц их измерения.

2. Неумение выделить в ответе главное.

3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы задачи или неверные объяснения хода ее решения; незнание приемов решения задач, аналогичных ранее решенных в классе, ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.

4. Неумение читать и строить графики и принципиальные схемы.

5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты, или использовать полученные данные для выводов.

6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.

7. Неумение определить показание измерительного прибора.

8. Нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки

1. Неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия, ошибки, вызванные несоблюдением условий проведении опыта или измерений.

2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.

3. Пропуск или неточное написание наименований единиц физических величин.

4. Нерациональный выбор хода решения.

Недочеты

1. Нерациональные записи при вычислениях, нерациональные приемы вычислении, преобразований и решений задач.

2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.

3. Отдельные погрешности в формулировке вопроса или ответа.

4. Небрежное выполнение записей, чертежей, схем, графиков. Орфографические и пунктуационные ошибки.


Учебно-методический комплект

  1. Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский. Физика. 10 класс. – М.: Просвещение, 2007.

  2. А.П. Рымкевич. Сборник задач по физике. 10 – 11 класс. – М.: Дрофа, 2006.