Муниципальное бюджетное
общеобразовательное учреждение
Куропатинская средняя общеобразовательная школа
Утверждаю
Приказ № ____ от _____________
Директор школы _____________
М.П.Савосько
Рассмотрена и принята Методическим объединением учителей естественно-математического цикла
Протокол № ___ от ____________
Руководитель МО _____________
Т.Е.Чебатурина
Рабочая программа по физике для 7 класса
основное общее образование
на 2014 – 2015 учебный год
Составлена: Новиковой Натальей Борисовной, учителем физики
2014 г.
РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ
ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ
7 КЛАСС
Пояснительная записка
Сведения о программе
Рабочая программа по физике составлена на основе Примерной программы основного общего образования и Программы курса физики для 7 – 11 классов общеобразовательных учреждений автор А.В.Перышкин. //Сборник Программ для общеобразовательных учреждений – М.: Дрофа, 2006, полностью отражающей содержание Примерной программы, соответсвующей требованиям, предъявляемым к уровню подготовки обучающихся.
Учебник: автор А.В.Перышкин Физика 7 класс И.Д. «Дрофа» 1999-2004 г.
Общая характеристика учебного предмета
Физика – фундаментальная наука, имеющая своей предметной областью общие закономерности природы во всем многообразии явлений окружающего нас мира. Физика – наука о природе, изучающая наиболее общие и простейшие свойства материального мира. Она включает в себя как процесс познания, так и результат – сумму знаний, накопленных на протяжении исторического развития общества. Этим и определяется значение физики в школьном образовании. Физика имеет большое значение в жизни современного общества и влияет на темпы развития научно-технического прогресса.
Физика как наука имеет своей предметной областью общие закономерности природы во всем многообразии явлений окружающего нас мира. Характерные для современной науки интеграционные тенденции привели к существенному расширению объекта физического исследования, включая космические явления (астрофизика), явления в недрах Земли и планет (геофизика), некоторые особенности явлений живого мира и свойства живых объектов (биофизика, молекулярная биология), информационные системы (полупроводники, лазерная и криогенная техника как основа ЭВМ). Физика стала теоретической основой современной техники и ее неотъемлемой составной частью. Этим определяются образовательное значение учебного предмета «Физика» и его содержательно-методические структуры:
Физические методы изучения природы.
Механика: кинематика, динамика, гидро-аэро-статика и динамика.
Молекулярная физика. Термодинамика.
Электростатика. Электродинамика.
Атомная физика.
Цели
развитие мышления учащихся, формирование у них самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;
овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;
усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании физических явлений и законов;
формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии.
Место предмета в базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение физики на ступени основного общего образования отводится не менее 208 ч из расчета 2 ч в неделю с VII по IX класс. Изучение курса физики в 7-9 классах структурировано на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Рабочая программа по физике для 7 класса рассчитана на 70 часов из расчета 2 часа в неделю.
Тематический план
№ | Общее количество часов | Общее количество часов | Из них |
Теоретическая часть | Лабораторные работы | Контрольные работы |
1 | Введение | 4 | 3 | 1 | |
2 | Первоначальные сведения о строение вещества | 6 | 4 | 1 | 1 |
3 | Взаимодействие тел | 24 | 19 | 4 | 1 |
4 | Давление твердых тел, жидкостей и газов. | 20 | 16 | 2 | 2 |
5 | Работа и мощность. Энергия. | 13 | 10 | 2 | 1 |
6 | Повторение. | 3 | 3 | | |
| Итого: | 70 | 55 | 10 | 5 |
ОСНОВНОЕ СОДЕРЖАНИЕ (70 Ч.)
I. введение (4 ч.)
Предмет и методы физики. Экспериментальный метод изучения природы. Измерение физических величин.
Погрешность измерения. Обобщение результатов эксперимента.
Наблюдение простейших явлений и процессов природы с помощью органов чувств (зрения, слуха, осязания). Использование простейших измерительных приборов. Схематическое изображение опытов. Методы получения знаний в физике. Физика и техника.
Фронтальная лабораторная работа.
1.Определение цены деления измерительного прибора.
II. Первоначальные сведения о строении вещества. (6 ч.)
Гипотеза о дискретном строении вещества. Молекулы. Непрерывность и хаотичность движения частиц вещества.
Диффузия. Броуновское движение. Модели газа, жидкости и твердого тела.
Взаимодействие частиц вещества. Взаимное притяжение и отталкивание молекул.
Три состояния вещества.
Фронтальная лабораторная работа.
1.Измерение размеров малых тел.
III. ВЗАИМОДЕЙСТВИЕ ТЕЛ. (24 ч.)
Механическое движение. Равномерное и не равномерное движение. Скорость.
Расчет пути и времени движения. Траектория. Прямолинейное движение.
Взаимодействие тел. Инерция. Масса. Плотность.
Измерение массы тела на весах. Расчет массы и объема по его плотности.
Сила. Силы в природе: тяготения, тяжести, трения, упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Динамометр. Сложение двух сил, направленных по одной прямой. Трение.
Упругая деформация.
Фронтальная лабораторная работа.
3.Измерение массы тела на рычажных весах.
4.Измерение объема тела.
5.Измерение плотности твердого вещества.
6.Градуирование пружины и измерение сил динамометром.
IV. ДАВЛЕНИЕ ТВЕРДЫХ ТЕЛ, ЖИДКОСТЕЙ И ГАЗОВ. (2 ч.)
Давление. Опыт Торричелли.
Барометр-анероид.
Атмосферное давление на различных высотах. Закон Паскаля. Способы увеличения и уменьшения давления.
Давление газа. Вес воздуха. Воздушная оболочка. Измерение атмосферного давления. Манометры.
Поршневой жидкостный насос. Передача давления твердыми телами, жидкостями, газами.
Действие жидкости и газа на погруженное в них тело. Расчет давления жидкости на дно и стенки сосуда.
Сообщающие сосуды. Архимедова сила. Гидравлический пресс.
Плавание тел. Плавание судов. Воздухоплавание.
Фронтальная лабораторная работа.
7.Измерение выталкивающей силы, действующей на погруженное в жидкость тело.
8.Выяснение условий плавания тела в жидкости.
V. РАБОТА И МОЩНОСТЬ. ЭНЕРГИЯ. (13 ч.)
Работа. Мощность. Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Простые механизмы. КПД механизмов.
Рычаг. Равновесие сил на рычаге. Момент силы. Рычаги в технике, быту и природе.
Применение закона равновесия рычага к блоку. Равенство работ при использовании простых механизмов. «Золотое правило» механики.
Фронтальная лабораторная работа.
9.Выяснение условия равновесия рычага.
10.Измерение КПД при подъеме по наклонной плоскости.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ
1. Владеть методами научного познания
1.1. Собирать установки для эксперимента по описанию, рисунку или схеме и проводить наблюдения изучаемых явлений.
1.2. Измерять: температуру, массу, объем, силу (упругости, тяжести, трения скольжения), расстояние, промежуток времени, силу тока, напряжение, плотность, период колебаний маятника, фокусное расстояние собирающей линзы.
1.3. Представлять результаты измерений в виде таблиц, графиков и выявлять эмпирические закономерности:
— изменения координаты тела от времени;
— силы упругости от удлинения пружины;
— силы тяжести от массы тела;
— массы вещества от его объема;
1.4.Объяснить результаты наблюдений и экспериментов:
— большую сжимаемость газов;
— малую сжимаемость жидкостей и твердых тел;
1.5. Применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений:
— положение тела при его движении под действием силы;
— удлинение пружины под действием подвешенного груза;
2. Владеть основными понятиями и законами физики
2.1. Давать определения физических величин и формулировать физические законы.
2.2. Описывать:
— физические явления и процессы;
2.3. Вычислять:
— равнодействующую силу;
—массу тела, если известны плотность тела и его объем;
— давление;
— силу Архимеда;
— работу и мощность;
— КПД механизма;
— энергию.
3. Воспринимать, перерабатывать и предъявлять учебную информацию в различных формах (словесной, образной, символической)
3.1. Называть:
— преобразования энергии в двигателях внутреннего сгорания, электрогенераторах, электронагревательных приборах.
3.2. Приводить примеры:
— относительности скорости и траектории движения одного и того же тела в разных системах отсчета;
— изменения скорости тел под действием силы;
— деформации тел при взаимодействии;
— опытов, подтверждающих основные положения молекулярно-кинетической теории.
3.3. Читать и пересказывать текст учебника.
3.4. Выделять главную мысль в прочитанном тексте.
3.5. Находить в прочитанном тексте ответы на поставленные вопросы.
3.6. Конспектировать прочитанный текст.
3.7. Определять:
— промежуточные значения величин по таблицам результатов измерений и построенным графикам.